Parasite glycoconjugates. Part 12. ${ }^{1}$ Synthesis of deoxy, fluorodeoxy and aminodeoxy disaccharide phosphates, substrate analogues for the elongating α-d-mannopyranosylphosphate transferase in the Leishmania

Dmitry V. Yashunsky, ${ }^{a}$ Yury E. Tsvetkov, ${ }^{a}$ Michael A. J. Ferguson ${ }^{b}$ and Andrei V. Nikolaev *a
${ }^{a}$ Carnelley Building, School of Life Sciences (Chemistry), University of Dundee, Dundee, UK DD1 4HN
${ }^{b}$ Wellcome Trust Building, School of Life Sciences (Biochemistry), University of Dundee, Dundee, UK DD1 5EH

Received (in Cambridge, UK) 12th July 2001, Accepted 20th November 2001
First published as an Advance Article on the web 21st December 2001

A set of phosphodisaccharides, structural analogues of the β-D-galactosyl-($1 \rightarrow 4$)- α-D-mannosyl phosphate $\mathbf{1}$, are synthesized using the Koenigs-Knorr method for the glycosylation reactions and the glycosyl hydrogenphosphonate method for phosphorylation. The compounds were tested as acceptor substrates/putative inhibitors for the Leishmania α-d-mannosylphosphate transferase.

Introduction

The Leishmania are sandfly-transmitted protozoan parasites that cause a variety of debilitating and often fatal diseases throughout the tropics and sub-tropics. One of the major molecules forming the glycocalyx of the Leishmania is the lipophosphoglycan (LPG), which is produced by the infectious promastigote stage of all species of the parasite. The LPG has been shown to be essential for parasite infectivity and survival ${ }^{2}$ thus making the enzymes responsible for its biosynthesis of great interest. It contains a polymeric phosphoglycan region consisting of $(1 \longrightarrow 6)$-linked β-D-galactosyl- $(1 \longrightarrow 4)$ - α-D-mannosyl phosphate repeating units, which has been shown ${ }^{3}$ to be assembled in vitro by the sequential action of the Leishmania α-D mannopyranosylphosphate transferase (MPT) and β-D-galactopyranosyl transferase. Phospho-oligosaccharide fragments of the LPG of L. donovani, L. mexicana and L. major were synthesized ${ }^{4-7}$ in our laboratory and tested as acceptor substrates (in vitro) for the Leishmania MPT responsible for the transfer of α-D-Man p phosphate from GDP-Man to the growing phosphoglycan chain. It was reported ${ }^{8}$ that the phosphodisaccharide $1^{5,9}$ (representing one repeating unit of the phosphoglycan) is the minimal structure exhibiting acceptor substrate activity for the MPT. Biosynthetic transfer of $\alpha-\mathrm{D}-$ Manp phosphate from GDP-Man to compound $\mathbf{1}$ produced the expected trisaccharide diphosphate 1a (Scheme 1, top).

In Parts 9^{9} and 11^{1} of this series, we disclosed our interest in the design and synthesis of various structural analogues of compound $\mathbf{1}$ to test the fine acceptor substrate specificity of the MPT and to gain more information about enzyme-substrate recognition. Thus, phosphodisaccharides 2-7 (which are epimers of the substrate 1 at $\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-2$ or $\mathrm{C}-3$, respectively) and $\mathbf{8}$ and $\mathbf{9}$ (which are analogues of compound $\mathbf{1}$ deoxygenated at C-6 or C-6', respectively) have been synthesized and tested as acceptor substrates for the enzyme. Preliminary biosynthetic experiments ${ }^{10}$ showed that the epimerization at $\mathrm{C}-2, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$ or $\mathrm{C}-4^{\prime}$ does not strongly affect the substrate activity of the corresponding phosphodisaccharides: compounds 6, 3, $\mathbf{4}$ and $\mathbf{5}$ were all substrates for the MPT but with reduced kinetics relative to compound 1 . In contrast, the epimers at $\mathrm{C}-1^{\prime}$ (compound 2), at $\mathrm{C}-3$ (compound 7) and the 6 -
deoxy (8) and 6'-deoxy (9) analogues exhibited neither acceptor nor inhibitory activity, suggesting the β-configuration of D galactose residue and the hydroxy groups at C-3, C-6 and C-6', respectively, are the most essential for the enzyme-substrate binding.

We now report the chemical synthesis of the disaccharide phosphates 10-16 (Scheme 1), which are particular deoxy, fluorodeoxy and aminodeoxy analogues of compound 1 and designed in order to further refine the true acceptor substrate specificity of the enzyme. The information obtained from testing the acceptor (or inhibitory) activity of these compounds will be used to confirm which sugar hydroxy groups of compound $\mathbf{1}$ are involved in enzyme-substrate recognition events. Thus, the ability/inability of the 3-deoxy analogue $\mathbf{1 0}$ to act as a substrate for the MPT will confirm whether the $3-\mathrm{OH}$ group is vital for the enzyme binding. The ability/inability of the fluorinated disaccharide phosphates $\mathbf{1 1}$ and $\mathbf{1 2}$ to act as substrates may discriminate between essential hydrogen bond acceptor and donor functionality of hydroxy groups at C-3 and C-6, respectively. The 6^{\prime}-fluoro analogue 13 and 6^{\prime}-amino analogue 16 may act as inhibitors for the MPT. The 2 -amino and 2-acetamido derivatives $\mathbf{1 4}$ and $\mathbf{1 5}$ are expected to be acceptors for the MPT, since the epimer at C-2 (compound 6) did work as an acceptor. ${ }^{10}$ Both compounds should be quite lipophilic (the amino phosphate $\mathbf{1 4}$ will form a zwitterion) and may penetrate cell membranes. This property will be tested using living Leishmania promastigotes. The results will help to design potential inhibitors of the MPT.

Results and discussion

The synthetic schemes for the preparation of the phosphodisaccharides $\mathbf{1 0}-\mathbf{1 6}$ include a few general steps: (1) synthesis of appropriately protected and functionalized disaccharide derivatives; (2) anomeric de-O-protection followed by H-phosphonylation at position $\mathrm{O}-1$; (3) the preparation of O -protected disaccharide phosphates using the glycosyl H-phosphonate method; ${ }^{11}$ (4) total de-O-protection ($\rightarrow \mathbf{1 0}-\mathbf{1 3}$). For the synthesis of the amino and acetamido derivatives 14-16, additional steps: reduction of the azido group ($\rightarrow 14$ and 16) and N -acetylation $(\rightarrow \mathbf{1 5})$, were required.

Scheme 2 Reagents: i, (a) BzCl , pyridine; (b) $\mathrm{I}_{2}, \mathrm{MeOH}$; (c) BzCN , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$; ii, $\mathrm{AgSO}_{3} \mathrm{CF}_{3}$, 2,4,6-collidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Ac}_{2} \mathrm{O}$; iv, $\mathrm{Me}_{2} \mathrm{NH}$, MeCN-THF; v, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water (pH 7); vi, $\mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{MeCN}$; vii, (a) dec-9-en-1-ol, trimethylacetyl chloride, pyridine; (b) I_{2}, pyridine-water; viii, NaOMe , MeOH .

The 3-deoxydisaccharide derivative 21 (which is a precursor of the phosphodisaccharide $\mathbf{1 0}$; Scheme 2) was prepared by the glycosylation of the 2,6-di-O-benzoyl-3-deoxy derivative $\mathbf{1 8}$ with acetobromogalactose $19(\rightarrow \mathbf{2 0})$ followed by protective group modification at O-1. The glycosyl acceptor $\mathbf{1 8}$ was synthesized starting from the known 3-deoxy- α-d-arabinohexopyranoside 17^{12} in an overall yield of 69% by successive benzoylation, benzylidene acetal cleavage ${ }^{13}$ with iodine in MeOH , and selective 6-O-benzoylation ${ }^{14}$ with benzoyl cyanide. Silver triflate (AgOTf)-assisted base-deficient glycosylation ${ }^{15}$ reaction gave the β-linked disaccharide $20(60 \%)$. The process was accompanied by the formation of the 4-O-acetate 18a (37%) that decreased the efficiency of the glycosylation. Compound 18 a was shown to be easily converted back to the glycosyl acceptor 18 by de-O-acetylation ${ }^{16}$ with $\mathrm{HCl}-\mathrm{MeOH}$ in 89% yield. The disaccharide derivative $\mathbf{2 0}$ was converted to the crystalline penta-acetate 21 in 79% yield by acetolysis with $\mathrm{H}_{2} \mathrm{SO}_{4}$ in acetic anhydride.

Anomeric de-O-acylation ${ }^{1,4-7,9,11}$ of compound 21 with dimethylamine in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{THF}$ afforded the hemiacetal 22 (90%; $\alpha: \beta=9: 1$). H-Phosphonylation ${ }^{1,4-7,9,11}$ of this derivative with triimidazolylphosphine (prepared in situ from PCl_{3}, imidazole and $\mathrm{Et}_{3} \mathrm{~N}$) followed by mild hydrolysis gave an inseparable mixture of α - and β-linked H-phosphonates $24\left[\alpha: \beta=9: 1 ; \delta_{\mathrm{P}}\right.$ $0.50\left(\mathrm{P}^{\alpha}\right)$ and $1.26\left(\mathrm{P}^{\beta}\right)$], which was treated with $\mathrm{H}_{3} \mathrm{PO}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ to provide the pure α-(H-phosphonate) 23 (70% based on the hemiacetal 22). This procedure was developed ${ }^{1,17}$ for the 'correction' of the anomeric configuration of glycosyl Hphosphonates and utilizes the higher reactivity of the β-linked glycosyl H-phosphonate, converting them to either the α-linked
isomer (as a result of $S_{\mathrm{N}} 2$ attack), or easily separable hemiacetal derivative (product of acid-catalyzed cleavage of the H-phosphonate group).
Synthesis of the protected 2-azido-2-deoxydisaccharide derivative 31 (which is a precursor of the phosphodisaccharides 14 and 15 ; Scheme 3) was performed from the 2-azido-2-deoxy-α-D-mannoside 28 and acetobromogalactose $19(\rightarrow 29)$ followed by reprotection at O-1. The glycosyl acceptor 28 in turn was prepared starting from 4,6-O-benzylidene- α-Dglucopyranoside 26, ${ }^{18}$ which was converted first to the 2 -azido-3-O-benzoate 27 (89%) by selective 2-O-triflylation with triflic anhydride followed by benzoylation and nucleophilic replacement of the triflate with NaN_{3} in the presence of $n-\mathrm{Bu}_{4} \mathrm{NCl} .{ }^{19}$ Successive benzylidene acetal cleavage ${ }^{13}$ with iodine and selective 6-O-benzoylation with N-benzoylimidazole gave the mannoside 28 in 87% yield. The D-manno-configuration of the derivative $\mathbf{2 8}$ followed from the characteristic values of $J_{1,2}=1.6$ and $J_{2,3}=3.8 \mathrm{~Hz}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. Glycosylation of the acceptor $\mathbf{2 8}$ with the bromide $\mathbf{1 9}$ in the presence of AgOTf (as described for the disaccharide 20) produced the β-linked disaccharide 29 (75%) and some of the α-linked isomer 30 (13%). Compound 29 was further converted to the 1-O-acetate 31 (quantitatively) by treatment with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Ac}_{2} \mathrm{O}$.

Anomeric de-O-acetylation of the disaccharide 31 with $\mathrm{Me}_{2} \mathrm{NH}$ (as above) gave a complex mixture of products, where the desired hemiacetal 32 was a minor component. Alternatively, the reaction with tert-butylamine in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}^{17}$ proceeded smoothly and provided the hemiacetal 32 as a mixture of anomers ($\alpha: \beta=5: 1$). Compound 32 was converted to the pure α-(H-phosphonate) 33 by using the same procedure as described for the H-phosphonate 23: i.e., the reaction with triimidazolylphosphine and mild hydrolysis $\left[\rightarrow \mathbf{3 4} ; \alpha: \beta=5: 1 ; \delta_{\mathrm{P}}\right.$ $0.28\left(\mathrm{P}^{\alpha}\right)$ and $0.74\left(\mathrm{P}^{\beta}\right)$] followed by treatment with $\mathrm{H}_{3} \mathrm{PO}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$. This produced the H-phosphonate 33 (58% based on the 1-O-acetate 31) along with the recovered hemiacetal 32 (35\%).

The 3-deoxy-3-fluorodisaccharide derivative $\mathbf{4 2}$ (which is a precursor of the phosphodisaccharide 11; Scheme 4) was synthesized starting from known 1,6 -anhydro-3-deoxy-3-fluoro- β-d-mannopyranose ${ }^{20} 37$, which was converted to the 2-O-benzoyl derivative 38 (46%) by selective benzoylation with N -benzoylimidazole. The isomeric 4-benzoate 39 (14\%) and the dibenzoate $40(9.5 \%)$ were also isolated from the reaction mixture. Glycosylation of the acceptor 38 with acetobromogalactose 19 in the presence of AgOTf (as above) gave the disaccharide 41 (48%), which was transformed to the crystalline hexa-acetate $\mathbf{4 2}$ in 83% yield by routine acetolysis procedure (as described for the preparation of the disaccharides 21 and $\mathbf{3 1}$).
To prepare the 6-deoxy-6-fluorodisaccharide derivative 51 (which is a precursor of the phosphodisaccharide 12; Scheme 5), the 6-deoxy-6-fluoro-2,3-O-isopropylidene- α-d-mannopyranoside 49 was synthesized starting from benzyl α-D-mannopyranoside 46. Consecutive 6-O-tritylation, benzoylation and acid hydrolysis provided the 6 -hydroxy mannoside $47(60 \%)$, which was fluorinated ${ }^{21}$ with diethylaminosulfur trifluoride (DAST) to form the 6 -fluoride $\mathbf{4 8}(44 \%)$. The presence and the position of the fluorine atom in the molecule were confirmed by the characteristic signal at $\delta_{\mathrm{F}}-231(\mathrm{dt})$ in ${ }^{19} \mathrm{~F}$ NMR spectrum, and by the characteristic values of $J_{5, \mathrm{~F}}=22.9$ and $J_{6, \mathrm{~F}}=47.5 \mathrm{~Hz}$ in ${ }^{1} \mathrm{H}$ NMR spectrum (see Experimental section). The fluoride 48 was further converted to compound 49 (85%) by conventional debenzoylation followed by acetonation with 2,2dimethoxypropane. Glycosylation of the acceptor 49 with acetobromogalactose 19 in the presence of AgOTf (as above) afforded the crystalline disaccharide $\mathbf{5 0}(80 \%)$, which was transformed to the derivative $\mathbf{5 1}$ in 90% yield by isopropylidene acetal cleavage ${ }^{22}$ with pyridinium perchlorate followed by benzoylation.
The 6'-deoxy-6'-fluorodisaccharide derivative 61 (which is a precursor of the phosphodisaccharide 13), was synthesized

Scheme 3 Reagents: i, (a) $\mathrm{Tf}_{2} \mathrm{O}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) BzCl , pyridine; (c) $\mathrm{NaN}_{3}, n-\mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{PhMe}$; ii, (a) I_{2}, MeOH ; (b) N-benzoylimidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, 19, $\mathrm{AgSO}_{3} \mathrm{CF}_{3}, 2,4,6$-collidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Ac}_{2} \mathrm{O} ; \mathrm{v}, t-\mathrm{BuNH}_{2}, \mathrm{MeCN}-\mathrm{MeOH}$; vi, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water (pH 7); vii, $\mathrm{H}_{3} \mathrm{PO}_{3}$; MeCN, viii, (a) decan-1-ol, trimethylacetyl chloride, pyridine; (b) I_{2}, pyridine-water; ix, (a) NaOMe , MeOH ; (b) Dowex 50 $\left(\mathrm{Na}^{+}\right) ; \mathrm{x}, \mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{MeOH}$; xi, (a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{MeOH}$; (b) Dowex $50\left(\mathrm{H}^{+}\right) ;$(c) $\mathrm{Et}_{3} \mathrm{~N}$.
from the 6-deoxy-6-fluoro- α-D-galactosyl bromide 57 and the 6-O-benzoyl-2,3-O-isopropylidene- α-D-mannopyranoside $\mathbf{5 9}$, as shown in Scheme 6. The glycosyl donor 57 resulted from acetylation of the known 6-deoxy-6-fluorogalactoside $\mathbf{5 5}^{\mathbf{2 3}}$ followed by acetolysis $(\rightarrow \mathbf{5 6})$ and 1-bromination with HBr in acetic acid in 81% overall yield. The glycosyl acceptor 59 was prepared from benzyl α-D-mannoside 46 via bisisopropylidenation with 2,2-dimethoxypropane followed by controlled hydrolysis $^{24}(\rightarrow \mathbf{5 8} ; 72 \%)$ and selective benzoylation ${ }^{14}$ with benzoyl cyanide (82%). Glycosylation of the acceptor 59 with the bromide 57 in the presence of AgOTf (as above) gave the disaccharide $60(88 \%)$, which was converted to the pentabenzoate 61 (97%) by isopropylidene acetal cleavage ${ }^{22}$ with pyridinium perchlorate followed by benzoylation.

The 6^{\prime}-azido-6'-deoxydisaccharide derivative 67 (which is a precursor of the phosphodisaccharide 16; Scheme 7) was prepared starting from the known disaccharide $\mathbf{6 5},{ }^{4}$ which was converted first to the 6^{\prime}-hydroxy derivative 66 (76%) by consecutive de-O-acetylation ${ }^{16}$ with HCl in MeOH , tritylation with dimethoxytrityl chloride (DMTCl) in pyridine, benzoylation and detritylation under mildly acidic conditions. Treatment of compound 66 with the $\mathrm{NaN}_{3}-\mathrm{Ph}_{3} \mathrm{P}-\mathrm{CCl}_{4}$ system ${ }^{25}$ provided the 6^{\prime}-azido-6'-deoxy derivative 67 in 60% yield.

The β-configuration of newly formed glycosidic linkages in the disaccharides 20, 29, 41, 50 and 60 followed from the characteristic values of the $J_{1^{\prime}, 2^{\prime}}(7.7-8.1 \mathrm{~Hz})$ in ${ }^{1} \mathrm{H}$ NMR spectra. For the α-D-galactoside 30 the corresponding value is $J_{1^{\prime}, 2^{\prime}}=3.7 \mathrm{~Hz}$

In contrast to the anomeric de-O-acylation of the 3-deoxy(21) and 2-azido-2-deoxy- (31) disaccharide derivatives (see above), similar reaction of the 3-deoxy-3-fluoro (42) and

Scheme 4 Reagents: i, N-benzoylimidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ ii, 19, $\mathrm{AgSO}_{3} \mathrm{CF}_{3}$, 2,4,6-collidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Ac}_{2} \mathrm{O}$; iv, $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{MeCN}-\mathrm{THF}$; v, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water (pH 7); vi, (a) dec-9-en-1-ol, trimethylacetyl chloride, pyridine, (b) I_{2}, pyridinewater; vii, $\mathrm{NaOMe}, \mathrm{MeOH}$.

Scheme 5 Reagents: i, (a) TrCl , pyridine; (b) BzCl , pyridine; (c) 80% aq. AcOH; ii, DAST, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, (a) $\mathrm{NaOMe}, \mathrm{MeOH}$; (b) 2,2-dimethoxypropane, acetone, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$; iv, 19, $\mathrm{AgSO}_{3} \mathrm{CF}_{3}, 2,4,6$-collidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; v, (a) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{HClO}_{4}, \mathrm{MeCN}$-water; (b) BzCl , pyridine; vi, H_{2}, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, $\mathrm{EtOAc}-\mathrm{MeOH}$; vii, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water (pH 7); viii, (a) dec-9-en-1-ol, trimethylacetyl chloride, pyridine; (b) I_{2}, pyridine-water; ix, $\mathrm{NaOMe}, \mathrm{MeOH}$.

Scheme 6 Reagents: i, (a) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; (b) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Ac}_{2} \mathrm{O}$; ii, HBr , AcOH ; iii, 2,2-dimethoxypropane, acetone, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$; then water; iv, $\mathrm{BzCN}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$; v, $\mathrm{AgSO}_{3} \mathrm{CF}_{3}, 2,4,6$-collidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, (a) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{HClO}_{4}, \mathrm{MeCN}$-water; (b) BzCl , pyridine; vii, $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}$ / C, THF-MeOH; viii, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3}-$ NHHCO_{3}, water (pH 7); ix, (a) dec-9-en-1-ol, trimethylacetyl chloride, pyridine; (b) I_{2}, pyridine-water; $\mathrm{x}, \mathrm{NaOMe}, \mathrm{MeOH}$.

6'-azido-6'-deoxy (67) derivatives with dimethylamine in $\mathrm{CH}_{3} \mathrm{CN}$-THF afforded the pure α-hemiacetal disaccharides derivatives 43 (88%) and 68 (79%), respectively. Anomeric
de-O-benzylation of the 6-fluoro-6-deoxy (51) and 6^{\prime}-fluoro- 6^{\prime} deoxy (61) disaccharides was achieved by catalytic hydrogenation over palladium(II) hydroxide to give smoothly the α hemiacetal derivatives 52 and $\mathbf{6 2}$ in 90% and 81% yield, respectively. Compounds $43,52,62$ and 68 then were treated with triimidazolylphosphine followed by mild hydrolysis to produce the α-glycosyl H-phosphonates 44, 53, 63 and 69 , respectively, in excellent yields.

The disaccharide H-phosphonates 23, 44, 53 and 63 were converted to the protected phosphodiesters $25,45,54$ and $\mathbf{6 4}$ ($74-90 \%$ yield), respectively, by their condensation with dec-9-en-1-ol in pyridine in the presence of trimethylacetyl chloride followed by oxidation of the resulting H-phosphonic diesters with iodine in aq. pyridine. Similar condensation of the Hphosphonates 33 and 69 (containing azido groups) with decan1 -ol provided the phosphodiesters 35 (95%) and 70 (90%), respectively.

The deprotected phosphodisaccharides $\mathbf{1 0}-\mathbf{1 3}$ were prepared from the derivatives $\mathbf{2 5}, \mathbf{4 5}, 54$ and $\mathbf{6 4}$, respectively, by de-Oacylation with $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ methanolic sodium methoxide in $97-100 \%$ yield. The preparation of the aminodeoxy phosphodisaccharides $14(95 \%)$ and $16(44 \%) \dagger$ was performed from compounds 35 and 70, respectively, by de-O-acylation followed by reduction of azido groups in intermediates 36 and 71, respectively, by hydrogenation over palladium catalyst. NAcetylation ${ }^{26}$ of compound 14 with acetic anhydride in MeOH gave the phosphosaccharide 15 (91%).

The structures of the phosphodisaccharides $\mathbf{1 0} \mathbf{- 1 6}$ were confirmed by NMR and mass spectrometric data (see Table 1). The ${ }^{31} \mathrm{P}$ NMR spectra exhibited single signals $\left[\delta_{\mathrm{P}}\right.$ between -0.72 and -2.71], which are characteristic for glycosidically linked phosphodiesters. ${ }^{1,4-7,9,11,17}$ The presence of a $(1 \longrightarrow 1)$-phosphodiester linkage at the reducing terminus of each of the disaccharides $\mathbf{1 0}-\mathbf{1 6}$ was clearly indicated by the $\mathrm{C}-1$ and $\mathrm{C}-2$ signals of the corresponding monosaccharide residue and either the dec-9-enyl (for compounds 10-13) or the decyl unit (for compounds 14-16) in the ${ }^{13} \mathrm{C}$ NMR spectra. These signals were shifted as a result of the α - and β-effects of phosphorylation and were coupled with phosphorus (or broadened).
The position of the fluorine atom in compound 11 (at C-3) was confirmed by the chemical shift of the C-3 signal (which was strongly down-shifted as a result of fluorination) and the characteristic values ${ }^{21}$ of $J_{\mathrm{C} 2, \mathrm{~F}}=16.0, J_{\mathrm{C} 3, \mathrm{~F}}=185.0, J_{\mathrm{C} 4, \mathrm{~F}}=18.0$ and $J_{\mathrm{C} 5, \mathrm{~F}}=6.7 \mathrm{~Hz}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum (signal of C-1 appeared as a broadened unresolved triplet because of $\mathrm{C}-\mathrm{P}$ and $\mathrm{C}-\mathrm{F}$ couplings). The position of the fluorine atom in compounds $\mathbf{1 2}$ and $\mathbf{1 3}$ was confirmed in a similar manner.

The α-configuration of the D-glycopyranosyl phosphate fragments in the disaccharide phosphates $\mathbf{1 0} \mathbf{- 1 6}$ was evident from the characteristic values of ${ }^{1} J_{\mathrm{C}, \mathrm{H}}=168.9-173.3 \mathrm{~Hz}$ for the signal of $\mathrm{C}-1$ in the ${ }^{13} \mathrm{C}$ NMR spectra (it should be taken into account that compound $\mathbf{1 5}$ was prepared from compound 14). The value of ${ }^{1} J_{\mathrm{C} 1, \mathrm{H} 1} \approx 170 \mathrm{~Hz}$ is typical for $\alpha-\mathrm{D}$-derivatives. For β-D-glycosyl residues the value is about 160 Hz : for β-D-Gal p in compounds $\mathbf{1 0}-\mathbf{1 2}$ and $\mathbf{1 4},{ }^{1} J_{\mathrm{C}^{\prime}, \mathrm{H} 1^{\prime}}=158.6-162.6 \mathrm{~Hz}$ (Table 1; see also refs. 1, 4, 5, 11 and 27).

The molecular masses of the phosphodiesters $\mathbf{1 0}-16$ were confirmed by electrospray mass spectrometry (ESMS). The signals in the ES $(-)$ mass spectra corresponded to the pseudomolecular ions for the disaccharide phosphates (Table 1).

Compounds $\mathbf{1 0}-\mathbf{1 6}$ were tested in a biochemical assay in a cell-free system ${ }^{28}$ as substrate analogues/possible inhibitors for the MPT in the Leishmania. The phosphodisaccharides $\mathbf{1 0}$ and 11 (modified at C-3) showed increased (to about 130-140\%) acceptor substrate activity relative to compound $\mathbf{1}$, showing that the affinity of the substrate for the MPT can be improved
\dagger Crude product 16 was obtained in 94% yield, but required additional purification (see Experimental section), which led to a moderate final yield.

Table $1{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR data $\left[\delta_{\mathrm{C}}\right.$ and δ_{P} in ppm; $J_{\mathrm{C}, \mathrm{P}}\left(\right.$ in parentheses), $J_{\mathrm{C}, \mathrm{F}}$ and $J_{\mathrm{C}, \mathrm{H}}$ in Hz ; spectra recorded in $\left.\mathrm{D}_{2} \mathrm{O}\right]$ and $\mathrm{ESMS}(-)$ data (m / z) for the phosphodisaccharides $\mathbf{1 0 - 1 6}$

${ }^{a}$ Additional signals of $\mathrm{CCH}_{2} \mathrm{C}\left(\delta_{\mathrm{C}} 22.4-25.9,28.7-29.6\right.$ and 31.6-33.7) were present. ${ }^{b}$ Additional signals of $\mathrm{Et}_{3} \mathrm{NH}^{+}\left[\delta_{\mathrm{C}} 8.6-9.2\left(\mathrm{CH}_{3}\right)\right.$ and $\delta_{\mathrm{C}} 47.0-$ $47.6\left(\mathrm{CH}_{2}\right)$] were present. ${ }^{c}$ Additional signals of $\mathrm{CH}_{2} \mathrm{CH}_{3}\left(\delta_{\mathrm{C}} 13.8-14.0\right)$ were present. ${ }^{d}$ Additional signal of $\mathrm{COCH}_{3}\left(\delta_{\mathrm{C}} 22.3\right)$ was present. ${ }^{e}$ Corresponds to the pseudomolecular ions: $\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$for compounds $10\left(\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{NO}_{13} \mathrm{P}\right.$ requires $M, 645.35$; expected $\left.\mathrm{m} / z, 543.23\right)$, 11-13 $\left(\mathrm{C}_{28} \mathrm{H}_{55} \mathrm{FNO}_{13} \mathrm{P}\right.$ requires $M, 663.34$; expected $\left.m / z, 561.22\right)$ and $15\left(\mathrm{C}_{30} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{P}\right.$ requires $M, 704.38$; expected $\left.m / z, 602.27\right)$; [$\left.\mathrm{M}-\mathrm{Na}\right]^{-}$for compound $14\left(\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{NaO}_{13} \mathrm{P}\right.$ requires $M, 583.24$; expected $\left.m / z, 560.26\right)$; and $\left[\mathrm{M}-\mathrm{NH}_{3}-\mathrm{H}\right]^{-}$for compound $16\left(\mathrm{C}_{22} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{P}\right.$ requres M, 578.28 ; expected $m / z, 560.26$).

Scheme 7 Reagents: i, (a) $\mathrm{HCl}, \mathrm{MeOH}$; (b) DMTCl, pyridine; (c) BzCl , pyridine; (d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, $\mathrm{NaN}_{3}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CCl}_{4}$, DMF ; iii, $\mathrm{Me}_{2} \mathrm{NH}$, MeCN-THF; iv, (a) triimidazolylphosphine, MeCN; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water (pH 7); v, decan-1-ol, trimethylacetyl chloride, pyridine; (b) I_{2}, pyridine-water; vi, $\mathrm{NaOMe}, \mathrm{MeOH}$; vii, (a) Dowex $50\left(\mathrm{Na}^{+}\right)$; (b) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{MeOH}$.
by manipulating the $\mathrm{C}-3$ position and suggesting that the epimer (of compound 1) at C-3 7 did not work (see Introduction), probably due to a steric clash between the enzyme and the axial $3-\mathrm{OH}$ group.

The phosphodisaccharide $\mathbf{1 2}$ (fluorinated at C-6) showed reduced (to about 30%) acceptor substrate activity compared
with compound 1. Taking into account that the 6 -deoxy analogue $\mathbf{8}$ exhibited no acceptor activity at all (see Introduction), this result suggests that the $6-\mathrm{OH}$ group in the acceptor 1 acts principally as a hydrogen-bond acceptor. Compounds 14 and $\mathbf{1 5}$ (modified at C-2) were found to be substrates for the MPT, but with reduced kinetics relative to compound 1.

Compounds $\mathbf{1 3}$ and $\mathbf{1 6}$ (modified at C-6') exhibited (as well as the 6^{\prime}-deoxy analogue 9) neither acceptor nor inhibitory activity, suggesting that 1) there is no MPT activity can act at sites other than the C-6' hydroxy group and 2) this hydroxy group seems to be essential for enzyme recognition as well as for catalysis. A comprehensive characterization of the elongating MPT in the Leishmania using synthetic acceptor substrate analogues (a set of 25 phosphosaccharides) was recently published. ${ }^{28}$

Experimental

General procedures

Optical rotations were measured with a Perkin-Elmer 141 polarimeter; $[\alpha]_{\mathrm{D}}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. NMR spectra $\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ at $75 \mathrm{MHz},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ at 121 MHz , and ${ }^{19} \mathrm{~F}$ at 282 MHz) were recorded with a Bruker AM-300 spectrometer for solutions in CDCl_{3}, unless otherwise indicated. Chemical shifts (δ in ppm) are given relative to those for $\mathrm{Me}_{4} \mathrm{Si}$ for (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$), external aq. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (for ${ }^{31} \mathrm{P}$), and $\mathrm{CFCl}_{3}\left(\right.$ for ${ }^{19} \mathrm{~F}$); J-values are given in Hz . ES mass spectra were recorded with a Micromass Quattro system (Micromass Biotech, UK). IR spectra were recorded with a Nicolet 205 FT-IR spectrometer. TLC was performed on Kieselgel $60 \mathrm{~F}_{254}$ (Merck) with A, toluene-ethyl acetate ($9: 1$); B, toluene-ethyl acetate (7:3); C, toluene-ethyl acetate ($1: 1$); D, dichloro-methane-methanol ($9: 1$); and E, chloroform-methanol-water ($10: 10: 3$) as developers and detection under UV light or by charring with sulfuric acid-water-ethanol ($15: 85: 5$). Flashcolumn chromatography (FCC) was performed on Kieselgel 60 ($0.040-0.063 \mathrm{~mm}$) (Merck). Dichloromethane, acetonitrile, pyridine and toluene were freshly distilled from CaH_{2}. Solutions worked up were concentrated under reduced pressure at $<40^{\circ} \mathrm{C}$.

Methyl 2,6-di-O-benzoyl-3-deoxy- α-D-arabino-hexopyranoside 18

(a) To a stirred solution of the 3-deoxy derivative $\mathbf{1 7}^{12}(818 \mathrm{mg}$, 3.07 mmol) in pyridine ($7 \mathrm{~cm}^{3}$) was added benzoyl chloride $\left(0.5 \mathrm{~cm}^{3}, 4.31 \mathrm{mmol}, 1.4 \mathrm{eq}\right.$.) at $0^{\circ} \mathrm{C}$. After 2 h at rt , the reaction mixture was diluted with dichloromethane and washed successively with saturated aq. NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was dissolved in methanol $\left(15 \mathrm{~cm}^{3}\right)$ and a 2% solution of iodine in methanol $\left(15 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was refluxed for 30 min , cooled, quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and extracted with dichloromethane $\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was dissolved in acetonitrile ($10 \mathrm{~cm}^{3}$) and benzoyl cyanide ($386 \mathrm{mg}, 2.95 \mathrm{mmol}$) was added along with some triethylamine $\left(0.06 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred at rt for 10 min , quenched with methanol ($2 \mathrm{~cm}^{3}$), concentrated, and methanol ($2 \times 5 \mathrm{~cm}^{3}$) was evaporated off from the residue. FCC [toluene-ethyl acetate, $(80: 20) \rightarrow(70: 30)$] gave the monohydroxy derivative 18 ($819 \mathrm{mg}, 69 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+29\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.43$ (solvent B) (Found: C, 65.15; $\mathrm{H}, 5.7 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{7}$ requires C, 65.3; $\left.\mathrm{H}, 5.7 \%\right)$; $\delta_{\mathrm{H}} 2.12(1 \mathrm{H}$, ddd, $\left.J_{2, \text { 3ax }} 2.9, J_{3 \text { ax, } 4} 9.8, J_{3 \text { axx } 3 \text { eq }} 13.7,3-\mathrm{H}^{\text {ax }}\right), 2.46\left(1 \mathrm{H}, \mathrm{dt}, J_{2,3 \text { eq }}=\right.$ $J_{3 \mathrm{eq}, 4}=3.5,3-\mathrm{H}^{\mathrm{eq}}$), $3.49(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5} 9.0\right.$, $\left.J_{5,6 \mathrm{a}} 2.0, J_{5,6 \mathrm{~b}} 3.4,5-\mathrm{H}\right), 3.98(1 \mathrm{H}$, ddd, $4-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 4.99\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right), 5.20$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $7.20-8.20(10 \mathrm{H}, 2 \times \mathrm{Ph})$.
(b) A solution of HCl in MeOH [prepared at $0^{\circ} \mathrm{C}$ from acetyl chloride $\left(0.6 \mathrm{~cm}^{3}\right)$ and methanol $\left(14 \mathrm{~cm}^{3}\right)$] was added to a solution of the acetate $\mathbf{1 8 a}(672 \mathrm{mg}, 1.472 \mathrm{mmol})$ in dichloromethane ($5 \mathrm{~cm}^{3}$), the resulting solution was kept at rt for 20 h , concentrated, and toluene ($3 \times 10 \mathrm{~cm}^{3}$) was evaporated off from the residue. A solution of the residue in toluene-ethyl acetate ($80: 20$) was filtered through a pad of silica and the filtrate
was concentrated to give pure compound $\mathbf{1 8}$ ($506 \mathrm{mg}, 89 \%$), identical with that obtained above.

Methyl 2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl-($1 \longrightarrow$ 4)-2,6-di-O-benzoyl-3-deoxy- α-D-arabino-hexopyranoside 20

Silver triflate ($1.31 \mathrm{~g}, 5.10 \mathrm{mmol}, 1.73 \mathrm{eq}$.) was dried by evaporation of anhydrous toluene $\left(2 \times 15 \mathrm{~cm}^{3}\right)$ therefrom. A solution of acetobromogalactose $19(1.82 \mathrm{~g}, 4.425 \mathrm{mmol}, 1.5$ eq.), the dibenzoate $18(1.14 \mathrm{~g}, 2.95 \mathrm{mmol})$ and $2,4,6$-collidine ($2,4,6$ trimethylpyridine) ($0.5 \mathrm{~cm}^{3}, 3.835 \mathrm{mmol}, 1.3$ eq.) in dichloromethane ($30 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of silver triflate in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at -20 to $-30{ }^{\circ} \mathrm{C}$. Cooling was discontinued after the addition was complete, and, after 30 min , the mixture (which became slightly acidic) was neutralized with pyridine ($1 \mathrm{~cm}^{3}$), filtered through a Celite pad, and the filtrate was concentrated. FCC (toluene-ethyl acetate, $85: 15$) of the residue gave, first, the acetate $\mathbf{1 8 a}(463 \mathrm{mg}, 37 \%)$; $R_{\mathrm{f}} 0.63$ (solvent B); $\delta_{\mathrm{H}} 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.07\left(1 \mathrm{H}\right.$, ddd, $J_{2,3 \text { ax }} 3.1$, $\left.J_{3 \mathrm{ax}, 4} 11.4, J_{3 \mathrm{eq}, 3 \mathrm{ax}} 13.8,3-\mathrm{H}^{\text {ax }}\right), 2.33\left(1 \mathrm{H}, \mathrm{ddd}, J_{2,3 \mathrm{eq}} 1.5, J_{3 \mathrm{eq}, 4} 4.0\right.$, $\left.3-\mathrm{H}^{\mathrm{eq}}\right), 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.07\left(1 \mathrm{H}\right.$, ddd, $J_{4,5} 10.2, J_{5,6 \mathrm{a}} 5.0$, $\left.J_{5,6 \mathrm{~b}} 2.4,5-\mathrm{H}\right), 4.37\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right), 4.59(1 \mathrm{H}, \mathrm{dd}$, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{1,2} 1.5,1-\mathrm{H}\right), 5.12(1 \mathrm{H}, \mathrm{dt}, 2-\mathrm{H}), 4.72(1 \mathrm{H}$, ddd, $4-\mathrm{H})$ and $7.20-8.10(10 \mathrm{H}, 2 \times \mathrm{Ph})$. Continued elution with toluene-ethyl acetate ($80: 20$) gave the desired disaccharide 20 $(1.256 \mathrm{~g}, 60 \%)$ as an amorphous solid; $[a]_{D}^{24}+28\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathrm{R}_{\mathrm{f}} 0.40$ (solvent B) (Found: $\mathrm{C}, 58.9 ; \mathrm{H}, 5.7 . \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{16}$ requires C, $58.7 ; \mathrm{H}, 5.6 \%$); $\delta_{\mathrm{H}} 1.85,1.89,2.00$, and 2.08 ($12 \mathrm{H}, 4 \mathrm{~s}, 4 \times$ Ac), 2.18-2.30 ($\left.1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\mathrm{ax}}\right), 2.40\left(1 \mathrm{H}\right.$, br d, $J_{3 \mathrm{eq}, 3 \mathrm{ax}} 13.8$, $3-$ H^{eq}), $3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81\left(1 \mathrm{H}, \mathrm{t}, J_{5^{\prime}, 6^{\prime}} 6.2,5^{\prime}-\mathrm{H}\right), 3.95-4.05$ $\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 3.7, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.8\right.$, $\left.6-\mathrm{H}^{\mathrm{a}}\right), 4.49\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.7,1^{\prime}-\mathrm{H}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}^{\mathrm{b}}\right), 4.65$ ($1 \mathrm{H}, \mathrm{br}$ s, $1-\mathrm{H}$), $4.88\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4, J_{2^{\prime}, 3^{\prime}} 10.4,3^{\prime}-\mathrm{H}\right)$, 5.11 $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.14\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.11\left(1 \mathrm{H}\right.$, br d, $\left.4^{\prime}-\mathrm{H}\right)$ and 7.20-8.10 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$).

2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl-($1 \rightarrow 4$)-1-O-acetyl-2,6-di-O-benzoyl-3-deoxy- α-d-arabino-hexopyranose 21

To a stirred solution of the disaccharide 20 (145 mg , $0.203 \mathrm{mmol})$ in acetic anhydride $\left(1 \mathrm{~cm}^{3}\right)$ was added sulfuric acid $\left(0.03 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with dichloromethane, washed successively with saturated aq. NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. FCC (toluene-ethyl acetate, $80: 20$) of the residue gave the penta-acetate 21 ($119 \mathrm{mg}, 79 \%$); $[a]_{\mathrm{D}}^{24}+30(c \quad 1$, CHCl_{3}); mp 121-122 ${ }^{\circ} \mathrm{C}$ (from EtOH); $R_{\mathrm{f}} 0.35$ (solvent B) (Found: C, 57.4; H, 5.5. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{17} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ requires C, 57.7 ; $\mathrm{H}, 5.9 \%) ; \delta_{\mathrm{H}} 1.95,1.98,2.09,2.17$ and $2.18(15 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{Ac}$), $2.34\left(1 \mathrm{H}\right.$, ddd, $\left.J_{2, \text { 3ax }} 2.8, J_{3 \mathrm{ax}, 4} 10.5, J_{\text {3ax,3eq }} 13.7,3-\mathrm{H}^{\text {ax }}\right), 2.64$ $\left(1 \mathrm{H}, \mathrm{dt}, J_{2,3 \mathrm{eq}}=J_{3 \mathrm{eq}, 4}=3.3,3-\mathrm{H}^{\text {eq }}\right), 3.90\left(1 \mathrm{H}, \mathrm{ddd}, J_{4^{\prime}, 5^{\prime}} 1.1, J_{5^{\prime}, 6 \mathrm{a}^{\prime}}\right.$ 5.7, $\left.J_{5^{\prime}, 6 b^{\prime}} 7.1,5^{\prime}-\mathrm{H}\right), 4.05-4.23\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right)$, $4.46\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 3.2, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}^{\mathrm{b}}\right)$, $4.58\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right), 4.97\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.4, J_{3^{\prime}, 4} 3.4\right.$, $\left.3^{\prime}-\mathrm{H}\right), 5.23(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.24\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.37(1 \mathrm{H}, \mathrm{dd}$, $\left.4^{\prime}-\mathrm{H}\right), 6.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and $7.30-8.20(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$.

2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-d-galactopyranosyl-($\mathbf{1} \rightarrow \mathbf{4}$)-2,6-di-O-benzoyl-3-deoxy- α / β-d-arabino-hexopyranose 22

To a solution of the 1-O-acetate $21(200 \mathrm{mg}, 0.269 \mathrm{mmol})$ in $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ was added $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ dimethylamine in THF $\left(1.0 \mathrm{~cm}^{3}, 2 \mathrm{mmol}, 7.4 \mathrm{eq}.\right)$, and the mixture was kept at rt with monitoring by TLC (solvent C). After 10 h , the mixture was concentrated and MeCN was evaporated off from the residue. FCC (toluene-ethyl acetate, $70: 30$) of the residue gave the disaccharide α, β-hemiacetal $22(170 \mathrm{mg}, 90 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+22\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.53$ (solvent C) (Found: C, $57.8 ; \mathrm{H}, 5.6 . \mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{16}$ requires $\left.\mathrm{C}, 58.1 ; \mathrm{H}, 5.45 \%\right)$; δ_{H} (inter alia) $1.85,1.88,1.97$ and $2.07(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 4.43$ (d, $\left.J_{1^{\prime}, 2^{\prime}} 7.8,1^{\prime}-\mathrm{H}^{\beta}\right), 4.50\left(\mathrm{~d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}^{\alpha}\right)$ and $7.20-8.20$ ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$) $\alpha: \beta=9: 1$.

2,3,4,6-Tetra-O-acetyl- β-d-galactopyranosyl-($1 \rightarrow \mathbf{4}$)-2,6-di-O-benzoyl-3-deoxy- α-D-arabino-hexopyranosyl hydrogenphosphonate, triethylammonium salt 23

To a stirred solution of imidazole ($296 \mathrm{mg}, 4.36 \mathrm{mmol}, 5.5 \mathrm{eq}$.) in $\mathrm{MeCN}\left(10 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added phosphorus trichloride $\left(0.115 \mathrm{~cm}^{3}, 1.32 \mathrm{mmol}, 5 \mathrm{eq}.\right)$ and then triethylamine $\left(0.65 \mathrm{~cm}^{3}\right.$, $4.54 \mathrm{mmol}, 5.7$ eq.). The mixture was stirred for 15 min , after which a solution of the hemiacetal derivative $22(185 \mathrm{mg}, 0.264$ $\mathrm{mmol})$ in $\mathrm{MeCN}\left(8 \mathrm{~cm}^{3}\right)$ was added dropwise during 15 min at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 30 min and quenched with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ triethylammonium (TEA) hydrogen carbonate ($\mathrm{pH} 7 ; 6 \mathrm{~cm}^{3}$). The clear solution was stirred for 15 min , dichloromethane ($50 \mathrm{~cm}^{3}$) was added, and the organic layer was washed in turn with ice-water and cold $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated to give the α, β-(H-phosphonate) $\mathbf{2 4}\left[\delta_{\mathrm{P}} 0.50\right.$ $\left(\mathrm{P}^{\alpha}\right)$ and $\left.1.26\left(\mathrm{P}^{\beta}\right) ; \alpha: \beta=9: 1\right]$. The residue was dissolved in $\mathrm{MeCN}\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$ ($368 \mathrm{mg}, 4.49 \mathrm{mmol}, 17$ eq.) was added. The mixture was kept at rt for 64 h , diluted with dichloromethane, and the organic layer was washed with cold $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\right.$ $\left.\mathrm{Et}_{3} \mathrm{~N},(98.8: 0.2: 1) \rightarrow(91: 8: 1)\right]$ of the residue gave, first, the hemiacetal derivative $22(46 \mathrm{mg}, 25 \%)$ and then the Hphosphonate 23 ($158 \mathrm{mg}, 70 \%$) as an amorphous solid; $[a]_{D}^{24}$ $+24\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.18($ solvent $D) ; \delta_{\mathrm{H}} 1.10(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.84,1.88,1.98$ and $2.08(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 2.38$ $\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\mathrm{ax}}\right), 2.65\left(7 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.3-\mathrm{H}^{\mathrm{eq}}\right), 3.75$ $\left(1 \mathrm{H}, \mathrm{t}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}}=J_{5^{\prime}, 6 \mathrm{~b}^{\prime}}=6.3,5^{\prime}-\mathrm{H}\right), 3.95-4.10(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$, and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.26\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{4,5} 9.9,5-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 4.0\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.8,6-\mathrm{H}^{\mathrm{a}}\right), 4.47\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right), 4.49(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 4.85\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4, J_{2^{\prime}, 3^{\prime}} 10.4,3^{\prime}-\mathrm{H}\right), 5.12(1 \mathrm{H}$, dd, $\left.2^{\prime}-\mathrm{H}\right), 5.15(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.25\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 5.55(1 \mathrm{H}$, br d, $\left.J_{1, \mathrm{P}} 8.5,1-\mathrm{H}\right), 6.97\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 634.3, \mathrm{HP}\right)$ and $7.25-8.10(10 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{P}} 0.50$; ESMS $(-)$ data: $m / z 764.9(100 \%,[\mathrm{M}-$ $\left.\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$) (expected m / z, $765.19 \mathrm{C}_{40} \mathrm{H}_{54} \mathrm{NO}_{18} \mathrm{P}$ requires M, 867.31).

Dec-9-enyl 2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyl-($1 \rightarrow 4$)-2,6-di-O-benzoyl-3-deoxy- α-d-arabino-hexopyranosyl phosphate, triethylammonium salt 25
A mixture of the H-phosphonate $23(140 \mathrm{mg}, 0.164 \mathrm{mmol})$ and dec-9-en-1-ol ($0.058 \mathrm{~cm}^{3}, 0.32 \mathrm{mmol}, 1.95$ eq.) was dried by evaporation of pyridine $\left(3 \times 2 \mathrm{~cm}^{3}\right)$ therefrom. The residue was dissolved in pyridine ($2 \mathrm{~cm}^{3}$), trimethylacetyl chloride $\left(0.06 \mathrm{~cm}^{3}\right.$, $0.487 \mathrm{mmol}, 2.97$ eq.) was added, and the mixture was stirred at rt for 30 min , whereafter a freshly prepared solution of iodine ($80 \mathrm{mg}, 0.315 \mathrm{mmol}, 1.92$ eq.) in pyridine-water ($95: 5 ; 2.3 \mathrm{~cm}^{3}$) was added. After 30 min , dichloromethane was added and the solution was washed successively with ice-cold $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and cold $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. FCC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N},(98.9: 0.1: 1) \longrightarrow(91: 8: 1)\right]$ of the residue gave the phosphodiester $25(148 \mathrm{mg}, 90 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+16\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.43$ (solvent $\left.D\right) ; \delta_{\mathrm{H}} 1.10-$ $1.30\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.20(9 \mathrm{H}$, $\left.\mathrm{t}, J 7.3,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.51\left(2 \mathrm{H}\right.$, quintet, $\left.J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $1.84,1.88,1.96$ and $2.08(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 1.95(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 2.10-2.45\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.91(6 \mathrm{H}, \mathrm{q}, 3 \times$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{t}, J_{5^{\prime}, 6^{\prime}} 6.4,5^{\prime}-\mathrm{H}\right), 3.85\left[2 \mathrm{H}, \mathrm{q}, J_{\mathrm{P}, \mathrm{H}}=\right.$ $\left.J\left(\mathrm{CH}_{2}, \mathrm{CH}_{2}\right)=6.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}\right], 4.00\left(2 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}_{2}\right), 4.07(1$ $\left.\mathrm{H}, \mathrm{dt}, J_{3 \mathrm{eq}, 4} 5.6, J_{3 \mathrm{ax}, 4}=J_{4,5}=10.4,4-\mathrm{H}\right), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 5-\mathrm{H})$, $4.36\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 3.0, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.8,6-\mathrm{H}^{\mathrm{a}}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{2}} 7.8\right.$, $\left.1^{\prime}-\mathrm{H}\right), 4.49\left(1 \mathrm{H}\right.$, br d, $\left.6-\mathrm{H}^{\mathrm{b}}\right)$, $4.85\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {gem }} 1.3, J_{\text {cis }} 10.2\right.$, $H \mathrm{CH}=\mathrm{CH}), 4.85\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {trans }} 16.9, \mathrm{HCH}=\right.$ $\mathrm{CH}), 5.12\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 2^{\prime}} 8.1, J_{2^{\prime}, 3^{\prime}} 10.3,2^{\prime}-\mathrm{H}\right), 5.19(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 5.25\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4} 3.3,4^{\prime}-\mathrm{H}\right), 5.49\left(1 \mathrm{H}\right.$, br d, $\left.J_{1, \mathrm{P}} 7.8,1-\mathrm{H}\right)$, $5.73\left[1 \mathrm{H}, \operatorname{ddt}, J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.7, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right]$ and $7.25-8.0$ $(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-2.14 ; \mathrm{ESMS}(-)$ data: $m / z 919.10(100 \%$,
[$\left.\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$) (expected m / z, 919.32; $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{NO}_{19} \mathrm{P}$ requires M, 1021.44).

Methyl 2-azido-3-O-benzoyl-4,6-O-benzylidene-2-deoxy- α-Dmannopyranoside 27
Triflic anhydride $\left(0.35 \mathrm{~cm}^{3}, 2.08 \mathrm{mmol}, 1.4\right.$ eq.) was added to a cooled ($-30^{\circ} \mathrm{C}$) solution of the diol $26^{18}(423 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \mathrm{~cm}^{3}\right)$ and pyridine $\left(2 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $-30{ }^{\circ} \mathrm{C}$ for 1 h , whereafter benzoyl chloride $\left(0.25 \mathrm{~cm}^{3}, 2.15\right.$ mmol, 1.43 eq.) was added. Cooling was discontinued and, after 15 min at rt , the reaction mixture was quenched with saturated aq. NaHCO_{3} and extracted with dichloromethane $\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed successively with water, $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. HCl , water, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was dissolved in toluene ($25 \mathrm{~cm}^{3}$), and $\mathrm{NaN}_{3}(650 \mathrm{mg}, 10 \mathrm{mmol}, 6.7$ eq.) and $n-\mathrm{Bu}_{4} \mathrm{NCl}(1.4 \mathrm{~g}, 5 \mathrm{mmol}, 3.35$ eq.) were added. The reaction mixture was stirred at rt for 12 h , then refluxed for 30 min , cooled, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. FCC [toluene-ethyl acetate, $(99: 1) \longrightarrow(95: 5)$] of the residue gave the azido derivative 27 ($549 \mathrm{mg}, 89 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+61\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.50$ (solvent A) (Found: C, 61.2; H, 5.2; N, 10.3. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, 61.3; H, 5.15; $\mathrm{N}, 10.2 \%)$; $v_{\max }$ (film) $/ \mathrm{cm}^{-1}$ (inter alia) $1724(\mathrm{C}=\mathrm{O}), 2108\left(-\mathrm{N}_{3}\right)$; $\delta_{\mathrm{H}} 3.47(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 9.8, J_{6 \mathrm{a}, 6 \mathrm{bb}} 10.2,6-\mathrm{H}^{\mathrm{a}}\right)$, $4.01\left(1 \mathrm{H}, \mathrm{dt}, J_{4,5}=J_{5,6 \mathrm{a}}=9.8, J_{5,6 \mathrm{~b}} 4.4,5-\mathrm{H}\right), 4.26\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}\right.$ $10.0,4-\mathrm{H}), 4.31\left(1 \mathrm{H}, \operatorname{br~d}, J_{2,3} 4.0,2-\mathrm{H}\right), 4.34\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right)$, $4.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 5.65(1 \mathrm{H}, \mathrm{s}, \mathrm{PhC} H), 5.78(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and 7.20-8.20 $(10 \mathrm{H}, 2 \times \mathrm{Ph})$.

Methyl 2-azido-3,6-di-O-benzoyl-2-deoxy- α-D-mannopyranoside 28

To a stirred solution of the azido derivative $27(510 \mathrm{mg}, 1.24$ mmol) in methanol ($15 \mathrm{~cm}^{3}$) was added a 2% solution of iodine in methanol $\left(15 \mathrm{~cm}^{3}\right)$. The reaction mixture was refluxed for 30 min , cooled, quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and extracted with dichloromethane $\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was dissolved in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ and imidazole ($440 \mathrm{mg}, 6.43 \mathrm{mmol}, 5.18$ eq.) was added followed by addition of benzoyl chloride $\left(0.375 \mathrm{~cm}^{3}\right.$, $3.22 \mathrm{mmol}, 2.6$ eq.). The resulting mixture was stirred at rt for 20 h , quenched with saturated aq. NaHCO_{3}, and extracted with dichloromethane. The extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. FCC [toluene-ethyl acetate, ($99: 1) \rightarrow(90: 10)]$ of the residue gave the monohydroxy derivative $28(461 \mathrm{mg}, 87 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+110(c 1$, CHCl_{3}); $R_{\mathrm{f}} 0.60$ (solvent B) (Found: C, $59.4 ; \mathrm{H}, 5.2 ; \mathrm{N}, 9.9$. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, $59.0 ; \mathrm{H}, 4.95 ; \mathrm{N}, 9.8 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ (inter alia) $1724(\mathrm{C}=\mathrm{O}), 2108\left(-\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}} 2.94\left(1 \mathrm{H}, \mathrm{d}, J_{4, \mathrm{OH}} 5.0\right.$, $\mathrm{OH}), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91\left(1 \mathrm{H}\right.$, ddd, $J_{4,5} 9.7, J_{5,6 \mathrm{a}} 2.1$, $\left.J_{5,6 \mathrm{~b}} 4.4,5-\mathrm{H}\right), 4.03\left(1 \mathrm{H}, \mathrm{dt}, J_{3,4} 9.7,4-\mathrm{H}\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.6\right.$, $\left.J_{2,3} 3.8,2-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.68(1 \mathrm{H}, \mathrm{dd}$, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 4.73(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.30-8.10$ ($10 \mathrm{H}, 2 \times \mathrm{Ph}$).

Methyl 2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyl-(1 $\rightarrow \mathbf{4}$)-2-azido-3,6-di-O-benzoyl-2-deoxy- α-D-mannopyranoside 29
The reaction of the dibenzoate $\mathbf{2 8}(213 \mathrm{mg}, 0.498 \mathrm{mmol})$ and acetobromogalactose 19 ($309 \mathrm{mg}, 0.751 \mathrm{mmol}, 1.51 \mathrm{eq}$. .) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \mathrm{~cm}^{3}\right)$ in the presence of AgOTf ($225 \mathrm{mg}, 0.875 \mathrm{mmol}$, 1.76 eq.) and $2,4,6$-collidine ($0.085 \mathrm{~cm}^{3}, 0.642 \mathrm{mmol}, 1.29$ eq.) was performed as described for the preparation of the disaccharide 20. FCC [toluene-ethyl acetate, $(90: 10) \longrightarrow(75: 25)]$ gave, first, the a-linked disaccharide $30(49 \mathrm{mg}, 13 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+115\left(c \quad 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.38$ (solvent B) (Found : C, 55.7; H, 5.2; N, 5.2. $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{16}$ requires C, 55.5; $\mathrm{H}, 5.2 ; \mathrm{N}, 5.5 \%$); $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1}$ (inter alia) 1721 and 1750
$(\mathrm{C}=\mathrm{O}), 2106\left(-\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}} 1.73,1.85,1.92$ and $2.01(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times$ $\mathrm{Ac}), 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{\prime}} 6.5, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.2\right.$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.96\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 b^{\prime}} 6.7,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.06\left(1 \mathrm{H}, J_{1,2} 2.1, J_{2,3}\right.$ $3.6,2-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.26\left(1 \mathrm{H}, \mathrm{t}, 5^{\prime}-\mathrm{H}\right), 4.32(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=9.3,4-\mathrm{H}\right), 4.48\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 5.1, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.1,6-\mathrm{H}^{\mathrm{a}}\right)$, $4.65\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 2.1,6-\mathrm{H}^{\mathrm{b}}\right), 4.73(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}), 5.10(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1^{\prime}, 2^{\prime}} 3.7, J_{2^{\prime}, 3^{\prime}} 11.0,2^{\prime}-\mathrm{H}\right), 5.20\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.0,3^{\prime}-\mathrm{H}\right), 5.35$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, 4^{\prime}-\mathrm{H}$), $5.46\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 5.56(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and 7.10-8.10 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$). Continued elution provided the β-linked disaccharide 29 ($283 \mathrm{mg}, 75 \%$); $[a]_{\mathrm{D}}^{24}+150\left(c 1, \mathrm{CHCl}_{3}\right)$; $\mathrm{mp} 165-167{ }^{\circ} \mathrm{C}$ (from EtOH); $R_{\mathrm{f}} 0.28$ (solvent B) (Found : C, 55.2; H, 5.1; N, 5.4. $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{16}$ requires C, $55.5 ; \mathrm{H}, 5.2$; $\mathrm{N}, 5.5 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ (inter alia) 1729 and 1752 (C=O), $2108\left(-\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}} 1.86,1.89,1.90$ and $1.96(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 3.46$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50-3.75\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.10(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 4.16\left(1 \mathrm{H}, J_{1,2} 1.9, J_{2,3} 3.6,2-\mathrm{H}\right), 4.31\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=J_{3,4}=\right.$ $9.5,4-\mathrm{H}), 4.45\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 5.2, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.9,6-\mathrm{H}^{\mathrm{a}}\right), 4.63(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{2}} 7.9,1^{\prime}-\mathrm{H}\right), 4.70\left(1 \mathrm{H}\right.$, br d, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 4.79(1 \mathrm{H}$, br s, $1-\mathrm{H}), 4.90$ ($\left.1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.2, J_{2^{\prime}, 3^{\prime}} 10.5,3^{\prime}-\mathrm{H}\right), 5.13\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.20$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 5.75(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.40-8.20(10 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Ph}$).

2,3,4,6-Tetra-O-acetyl- β-d-galactopyranosyl-(1 $\rightarrow 4$)-1-O-acetyl-2-azido-3,6-di-O-benzoyl-2-deoxy- α-D-mannopyranose 31

To a stirred solution of the disaccharide $29(180 \mathrm{mg}, 0.238$ mmol) in acetic anhydride ($2 \mathrm{~cm}^{3}$) was added sulfuric acid $\left(0.05 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with dichloromethane, washed successively with saturated aq. NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. FCC (toluene-ethyl acetate, $60: 40$) of the residue gave the penta-acetate 31 (186 mg , quant.) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+90\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.63$ (solvent C) (Found: C, $54.8 ; \mathrm{H}, 5.1 ; \mathrm{N}, 5.7 . \mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{17}$ requires C, $55.0 ; \mathrm{H}, 5.0$; $\mathrm{N}, 5.35 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ (inter alia) $1747(\mathrm{C}=\mathrm{O}), 2111\left(-\mathrm{N}_{3}\right)$; $\delta_{\mathrm{H}} 1.86,1.89(\times 2), 1.97$ and $2.13(15 \mathrm{H}, 4 \mathrm{~s}, 5 \times \mathrm{Ac}), 3.45-3.68$ ($3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}_{2}$), $4.00-4.10(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 5-\mathrm{H}), 4.32$ $\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=J_{3,4}=9.2,4-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 4.3, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2\right.$, $\left.6-\mathrm{H}^{\mathrm{a}}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{2}} 8.0,1^{\prime}-\mathrm{H}\right), 4.58\left(1 \mathrm{H}\right.$, br d, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 4.80$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4, J_{2^{\prime}, 3^{\prime}} 10.3,3^{\prime}-\mathrm{H}\right), 5.04\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.11$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 5.67(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 6.08\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.9,1-\mathrm{H}\right)$ and 7.40-8.20 $(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$.

2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2-azido-3,6-di-O-benzoyl-2-deoxy- α-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 33

To a solution of the 1-O-acetate $\mathbf{3 1}(260 \mathrm{mg}, 0.331 \mathrm{mmol})$ in $1: 3 \mathrm{MeOH}-\mathrm{MeCN}\left(12 \mathrm{~cm}^{3}\right)$ was added tert-butylamine ($0.4 \mathrm{~cm}^{3}, 3.79 \mathrm{mmol}, 10$ eq.) and the mixture was kept at rt . After 17 h (about 90% conversion by TLC), the mixture was diluted with dichloromethane, washed with water, dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}), and concentrated. A solution of the residue in tolueneethyl acetate ($60: 40$) was filtered through a pad of silica gel to give a crude product (250 mg), containing mainly the disaccharide α, β-hemiacetal derivative $32\left[\delta_{\mathrm{H}}\right.$ (inter alia) $1.85,1.89,1.90$ and $1.94(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac})$, $5.42\left(\mathrm{dd}, J_{2,3} 3.6, J_{3,4} 9.5,3-\mathrm{H}^{\beta}\right)$, $5.75\left(\mathrm{dd}, J_{2,3} 3.7, J_{3,4} 8.7,3-\mathrm{H}^{\omega}\right)$ and $7.40-8.20(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$; $\alpha: \beta=5: 1]$ and the starting material (about 10% recovery). This crude product was used without further purification.

The reaction of compound $32(250 \mathrm{mg},<0.331 \mathrm{mmol})$ with $\mathrm{PCl}_{3}\left(0.15 \mathrm{~cm}^{3}, 1.72 \mathrm{mmol}, 5.2\right.$ eq.), imidazole ($450 \mathrm{mg}, 6.62$ mmol, 6.7 eq.) and $\mathrm{Et}_{3} \mathrm{~N}\left(1.3 \mathrm{~cm}^{3}, 9.1 \mathrm{mmol}, 9.2\right.$ eq.) in $\mathrm{CH}_{3} \mathrm{CN}$ $\left(18 \mathrm{~cm}^{3}\right)$ followed by hydrolysis with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. TEA hydrogen carbonate ($6 \mathrm{~cm}^{3}$), was accomplished as described for the preparation of the disaccharide H -phosphonate 24. After work-up, the solution was concentrated and acetonitrile was evaporated off from the residue to give the $\alpha, \beta-(\mathrm{H}$-phosphonate) $34\left[\delta_{\mathrm{P}} 0.28\left(\mathrm{P}^{\alpha}\right)\right.$ and $\left.0.74\left(\mathrm{P}^{\beta}\right) ; \alpha: \beta=5: 1\right]$. The residue was dissolved in $\mathrm{MeCN}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{H}_{3} \mathrm{PO}_{3}(461 \mathrm{mg}, 5.63 \mathrm{mmol}$, 17 eq.) was added. The mixture was kept at rt for 72 h , diluted
with dichloromethane, and the organic layer was washed successively with water and $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N},(98.8: 0.2: 1) \longrightarrow(91: 8: 1)\right]$ of the residue gave, first, the hemiacetal derivative $32(87 \mathrm{mg}, 35 \%$ recovery) and then the H-phosphonate $33(175 \mathrm{mg}, 58 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+66\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.18$ (solvent D); $v_{\text {max }}$ (film)/ cm^{-1} (inter alia) 1727 and $1750(\mathrm{C}=\mathrm{O}), 2110\left(-\mathrm{N}_{3}\right)$; $\delta_{\mathrm{H}} 1.24\left(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.91,1.93,1.97$ and 2.02 $(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 2.92\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.40-3.70(3 \mathrm{H}$, $\mathrm{m}, 5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 2.0, J_{2,3} 3.8,2-\mathrm{H}\right), 4.30-$ $4.45\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}^{\mathrm{a}}\right)$, $4.58\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right)$, $4.67\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.6,6-\mathrm{H}^{\mathrm{b}}\right), 4.84\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4, J_{2^{\prime}, 3^{\prime}}\right.$ $\left.10.3,3^{\prime}-\mathrm{H}\right), 5.08\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}\right.$, br d, $\left.4^{\prime}-\mathrm{H}\right), 5.66$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1, \mathrm{P}} 8.7,1-\mathrm{H}\right), 5.79\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 9.1,3-\mathrm{H}\right), 7.01(1 \mathrm{H}$, $\mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 636.4, \mathrm{HP}$) and $7.40-8.20(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{P}} 0.28$; ESMS(-) data: $m / z 805.93\left(100 \%\right.$, $\left.\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)$(expected $m / z, 806.19 ; \mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{18}$ P requires $M, 908.31$).

Decyl 2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyl-(1 $\rightarrow 4$)-2-azido-3,6-di-O-benzoyl-2-deoxy- α-d-mannopyranosyl phosphate, triethylammonium salt 35

A mixture of the H-phosphonate $33(160 \mathrm{mg}, 0.176 \mathrm{mmol})$ and decan-1-ol ($0.07 \mathrm{~cm}^{3}$, $0.366 \mathrm{mmol}, 2.1 \mathrm{eq}$.) was dried by evaporation of pyridine $\left(3 \times 2 \mathrm{~cm}^{3}\right)$ therefrom. The residue was dissolved in pyridine $\left(1 \mathrm{~cm}^{3}\right)$, trimethylacetyl chloride $\left(0.06 \mathrm{~cm}^{3}\right.$, $0.487 \mathrm{mmol}, 2.8$ eq.) was added, and the mixture was stirred at rt for 30 min , whereafter a freshly prepared solution of iodine ($93 \mathrm{mg}, 0.366 \mathrm{mmol}, 2.8$ eq.) in pyridine-water ($95: 5 ; 2.7 \mathrm{~cm}^{3}$) was added. After 30 min , dichloromethane was added and the solution was washed successively with ice-cold $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and cold $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. FCC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}\right.$, $\left.(98.9: 0.1: 1) \longrightarrow(87: 12: 1)\right]$ of the residue gave the phosphodiester $35(178 \mathrm{mg}, 95 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+72$ (c 1, CHCl_{3}); $R_{\mathrm{f}} 0.33$ (solvent D); $v_{\text {max }}$ (film)/ cm^{-1} (inter alia) 1734 and $1754(\mathrm{C}=\mathrm{O}), 2110\left(-\mathrm{N}_{3}\right)$; $\delta_{\mathrm{H}} 0.88\left(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.23\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right)$, $1.33\left(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.60(2 \mathrm{H}$, quintet, $J 6.9$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.92,1.94,1.98$ and $2.03(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac})$, $3.05\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.50-3.75\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 3.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}\right), 4.31\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 2.1, J_{2,3}\right.$ 3.9, 2-H), 4.35-4.45 ($3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}^{\mathrm{a}}$), $4.58(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right), 4.66\left(1 \mathrm{H}\right.$, br d, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.3,6-\mathrm{H}^{\mathrm{b}}\right), 4.83(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3^{\prime}, 4^{\prime}} 3.5, J_{2^{\prime}, 3^{\prime}} 10.4,3^{\prime}-\mathrm{H}\right), 5.08\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.4^{\prime}-\mathrm{H}\right), 5.60\left(1 \mathrm{H}, \mathrm{dd}, J_{1, \mathrm{P}} 7.7,1-\mathrm{H}\right), 5.81\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 8.9,3-\mathrm{H}\right)$ and 7.40-8.20 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$); $\delta_{\mathrm{P}}-2.66$; ESMS(-) data: $m / z 962.04\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)($expected m / z, 962.34; $\mathrm{C}_{50} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{19} \mathrm{P}$ requires $M, 1064.46$).

Decyl β-d-galactopyranosyl-(1 $\rightarrow 4$)-2-azido-2-deoxy- α-dmannopyranosyl phosphate, sodium salt 36

To a solution of compound $35(170 \mathrm{mg}, 0.16 \mathrm{mmol})$ in MeOH $\left(5.0 \mathrm{~cm}^{3}\right)$ was added $4.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methanolic NaOMe $\left(0.5 \mathrm{~cm}^{3}\right)$. The mixture was kept at rt for 4 h , whereafter it was deionized with Dowex $50 \mathrm{~W}-\mathrm{X} 4\left(\mathrm{H}^{+}\right)$resin, filtered and immediately neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. After concentration, water ($3 \times 5 \mathrm{~cm}^{3}$) was evaporated off from the residue to remove methyl benzoate. The residue was dissolved in water $\left(50 \mathrm{~cm}^{3}\right)$, treated with Dowex 50W-X4 $\left(\mathrm{Na}^{+}\right)$resin for 19 h and filtered. The filtrate was concentrated to give the phosphodiester 36 (98 mg , quant.) as an amorphous solid; $[a]_{\mathrm{D}}^{4^{4}}+18$ (c 1, MeOH); $R_{\mathrm{f}} 0.83$ (solvent E); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ (inter alia) $2114\left(-\mathrm{N}_{3}\right), 3426$ $(\mathrm{OH}) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 14.2,22.9,25.9,29.6(2 \mathrm{C}), 29.8(2 \mathrm{C}), 32.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 30.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}\right.$ 6.5, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}$), 60.5 (C-6), 61.1 (C-6'), 64.4 (d, $J_{\mathrm{C}, \mathrm{P}} 8.0, \mathrm{C}-2$), $66.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}} 5.8, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}\right), 68.8\left(\mathrm{C}-4^{\prime}\right), 69.3(\mathrm{C}-3), 71.3$ (C-2'), 72.7 (C-5), 72.9 (C-3'), 75.6 (C-5'), 76.6 (C-4), 94.3 (br s, $\mathrm{C}-1), 103.5\left(\mathrm{C}-11^{\prime}\right) ; \delta_{\mathrm{P}}-2.12$; $\operatorname{ESMS}(-)$ data: $m / z 585.74$ (100%,
[$\mathrm{M}-\mathrm{Na}]^{-}$), (expected m / z, 586.25; $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{NaO}_{13}$ P requires M, 609.23).

1,6-Anhydro-2-O-benzoyl-3-deoxy-3-fluoro- β-D-mannopyranose

 38To a solution of the diol $\mathbf{3 7}^{\mathbf{2 0}}(2.05 \mathrm{~g}, 12.5 \mathrm{mmol})$ and imidazole ($2.21 \mathrm{~g}, 32.5 \mathrm{mmol}, 2.6$ eq.) in dichloromethane ($40 \mathrm{~cm}^{3}$) was added benzoyl chloride ($1.74 \mathrm{~cm}^{3}, 15 \mathrm{mmol}, 1.2$ eq.) and the mixture was stirred for 2.5 h at rt . After the addition of several drops of water, the mixture was diluted with dichloromethane, washed successively with $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl , water, and saturated aq. NaHCO_{3}, and concentrated. FCC (toluene-ethyl acetate, $75: 25$) of the residue gave, in order of elution, the known 2,4-di-O-benzoate $\mathbf{4 0}{ }^{20}(0.44 \mathrm{~g}, 9.5 \%)$; the 4 -O-benzoate $39(0.45 \mathrm{~g}, 14 \%) ;[a]_{\mathrm{D}}^{24}-153\left(c 2, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 142-143^{\circ} \mathrm{C}$ (from diethyl ether-hexane); $R_{\mathrm{f}} 0.46$ (solvent B) (Found : C, 58.5; $\mathrm{H}, 4.9 . \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FO}_{5}$ requires C, 58.2 ; H 4.9\%); $\delta_{\mathrm{H}} 2.97$ (1 H , dd, $\left.J_{\mathrm{OH}, \mathrm{F}} 3.6,2-\mathrm{OH}\right), 3.82\left(1 \mathrm{H}\right.$, dddd, $J_{1,2} 2.0, J_{2,3} 4.6, J_{2, \mathrm{~F}} 23.4$, $\left.J_{2, \text { OH }} 12.3,2-\mathrm{H}\right), 3.89\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 5.9, J_{6 \mathrm{a}, \mathrm{F}} 3.5,6-\mathrm{H}^{\mathrm{a}}\right)$, 4.18 $\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{~b}}=J_{6 \mathrm{~b}, \mathrm{~F}}=1.2, J_{6 \mathrm{a}, 6 \mathrm{~b}} 7.8,6-\mathrm{H}^{\mathrm{b}}\right), 4.75(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 5-\mathrm{H})$, $4.88\left(1 \mathrm{H}, \mathrm{ddt}, J_{1,3}=J_{3,4}=1.8, J_{3, \mathrm{~F}} 46.9,3-\mathrm{H}\right), 5.32(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{4,5} 1.8, J_{4, \mathrm{~F}} 13.1,4-\mathrm{H}\right), 5.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and $7.28-8.30(5 \mathrm{H}$, m, Ph); and the required 2-O-benzoate $38(1.53 \mathrm{~g}, 46 \%)$; $[a]_{\mathrm{D}}^{24}$ -106 (c 1, CHCl_{3}); $\mathrm{mp} 109-110^{\circ} \mathrm{C}$ (from diethyl ether-hexane); $R_{\mathrm{f}} 0.38$ (solvent B) (Found: C, 58.6; H, 5.0. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FO}_{5}$ requires C, $58.2 ; \mathrm{H}, 4.9 \%)$; $\delta_{\mathrm{H}} 3.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{OH}), 3.93\left(1 \mathrm{H}\right.$, ddd, $J_{5,6 \mathrm{a}}$ $\left.5.9, J_{6 a, \mathrm{~F}} 3.8,6-\mathrm{H}^{\mathrm{a}}\right), 4.10\left(1 \mathrm{H}\right.$, br d, $\left.J_{4, \mathrm{~F}} 10.2,4-\mathrm{H}\right), 4.43(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{5,6 \mathrm{~b}}=J_{6 \mathrm{~b}, \mathrm{~F}}=1.2, J_{6 \mathrm{a}, 6 \mathrm{~b}} 7.8,6-\mathrm{H}^{\mathrm{b}}\right)$, $4.66(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 5-\mathrm{H}), 5.02$ (1 H , dddd, $\left.J_{3,4} 2.1, J_{3, \mathrm{~F}} 48.5,3-\mathrm{H}\right), 5.17\left(1 \mathrm{H}\right.$, ddd, $J_{2,3} 4.3$, $\left.J_{2, \mathrm{~F}} 25.1,2-\mathrm{H}\right), 5.64\left(1 \mathrm{H}, \mathrm{t}, J_{1,2}=J_{1,3}=1.8,1-\mathrm{H}\right)$ and $7.38-8.25$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

2,3,4,6-Tetra-O-acetyl- β-d-galactopyranosyl-($1 \rightarrow 4$)-1,6-anhydro-2-O-benzoyl-3-deoxy-3-fluoro- β-D-mannopyranose 41

The reaction of the alcohol $38(1.27 \mathrm{~g}, 4.73 \mathrm{mmol})$ and acetobromogalactose 19 ($2.92 \mathrm{~g}, 7.1 \mathrm{mmol}, 1.5$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(40 \mathrm{~cm}^{3}\right)$ in the presence of $\operatorname{AgOTf}(2 \mathrm{~g}, 7.8 \mathrm{mmol}, 1.65 \mathrm{eq}$.) and 2,4,6-collidine ($0.84 \mathrm{~cm}^{3}, 6.4 \mathrm{mmol}, 1.35 \mathrm{eq}$.) was performed as described for the preparation of the disaccharide 20. FCC (toluene-ethyl acetate, $75: 25$) afforded the β-linked disaccharide 41 ($1.36 \mathrm{~g}, 48 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}-64$ (c 2, CHCl_{3}); $R_{\mathrm{f}} 0.49$ (solvent C) (Found: C, $54.5 ; \mathrm{H}, 5.3$. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{FO}_{14}$ requires C, 54.2; H, 5.2\%); $\delta_{\mathrm{H}} 1.93,1.96,2.03$ and $2.12(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 3.82\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{a}} 5.9, J_{6 \mathrm{a}, \mathrm{F}} 3.8,6-\mathrm{H}^{\mathrm{a}}\right)$, $3.87\left(1 \mathrm{H}, \mathrm{dt}, J_{5^{\prime}, 6 a^{\prime}}=J_{5^{\prime}, 6 \mathrm{~b}^{\prime}}=6.7,5^{\prime}-\mathrm{H}\right), 4.01\left(1 \mathrm{H}, \mathrm{dt}, J_{4,5} 1.8\right.$, $\left.J_{4, \mathrm{~F}} 12.5,4-\mathrm{H}\right), 4.04\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.3,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.11(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{5,6 \mathrm{~b}}=J_{6 \mathrm{~b}, \mathrm{~F}}=1.2, J_{6 \mathrm{a}, 6 \mathrm{~b}} 7.7,6-\mathrm{H}^{\mathrm{b}}\right), 4.12\left(1 \mathrm{H}, \mathrm{dd}, 6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.53$ (1 H , br d, $5-\mathrm{H}$), $4.63\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 4.94(1 \mathrm{H}$, ddd, $\left.J_{2,3} 4.3, J_{2, \mathrm{~F}} 25.5,2-\mathrm{H}\right), 4.97\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4} 3.4,3^{\prime}-\mathrm{H}\right), 5.09(1 \mathrm{H}$, dddd, $\left.J_{3,4} 1.9, J_{3, \mathrm{~F}} 48.0,3-\mathrm{H}\right), 5.19\left(1 \mathrm{H}\right.$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right)$, $5.33\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 1.2,4^{\prime}-\mathrm{H}\right), 5.52\left(1 \mathrm{H}, \mathrm{t}, J_{1,2}=J_{1,3}=1.7,1-\mathrm{H}\right)$ and 7.33-8.08 $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

2,3,4,6-Tetra-O-acetyl- β-d-galactopyranosyl-(1 $\rightarrow 4$)-1,6-di-O-acetyl-2-O-benzoyl-3-deoxy-3-fluoro- α-D-mannopyranose 42

To a solution of the disaccharide $41(1.25 \mathrm{~g}, 2.09 \mathrm{mmol})$ in acetic anhydride $\left(15 \mathrm{~cm}^{3}\right)$ was added sulfuric acid $\left(0.06 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The solution was kept at rt for 2 h , then poured into icewater, and the mixture was stirred for 2 h . The precipitate formed was filtered off and the filtrate was extracted with dichloromethane $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. A solution of the precipitate in dichloromethane and the combined extracts were washed successively with water, saturated aq. NaHCO_{3}, and water, and concentrated. Crystallization of the residue from ethanol afforded the hexa-acetate $42(1.22 \mathrm{~g}, 83 \%) ;[a]_{\mathrm{D}}^{24}+30(c 2$, CHCl_{3}); mp 191-193 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.54$ (solvent C) (Found : C, 53.2 ; $\mathrm{H}, 5.25 . \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{FO}_{17}$ requires C, 53.1; H, 5.3%); $\delta_{\mathrm{H}} 1.99,2.00$, 2.09, 2.15 and $2.17(\times 2)(18 \mathrm{H}, 5 \mathrm{~s}, 6 \times \mathrm{Ac}), 3.93(1 \mathrm{H}$, ddd,
$\left.J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 6.1,5^{\prime}-\mathrm{H}\right), 3.99\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 4.1,5-\mathrm{H}\right), 4.10(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.3,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.18\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,5} 9.8, J_{4, \mathrm{~F}} 14.9,4-\mathrm{H}\right), 4.21$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right), 4.24\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 7.0,6-\mathrm{H}^{\mathrm{b}}\right), 4.42$ $\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{~b}} 2.1, J_{6 \mathrm{~b}, \mathrm{~F}} 1.9,6-\mathrm{H}^{\mathrm{b}}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right)$, $5.02\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.5,3^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}\right.$, ddd, $J_{3,4} 8.6, J_{3, \mathrm{~F}} 46.9$, $3-\mathrm{H}), 5.26\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.4,2^{\prime}-\mathrm{H}\right), 5.39\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 1.1\right.$, $\left.4^{\prime}-\mathrm{H}\right), 5.58\left(1 \mathrm{H}\right.$, ddd, $\left.J_{2,3} 3.8, J_{2, \mathrm{~F}} 6.2,2-\mathrm{H}\right), 6.23(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1,2} 2.3, J_{1, \mathrm{~F}} 4.7,1-\mathrm{H}\right)$ and $7.43-8.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

2,3,4,6-Tetra-O-acetyl- β-d-galactopyranosyl-($1 \rightarrow 4$)-6-O-acetyl-2-O-benzoyl-3-deoxy-3-fluoro- α-D-mannopyranose 43

To a solution of the 1-O-acetate $\mathbf{4 2}(960 \mathrm{mg}, 1.37 \mathrm{mmol})$ in acetonitrile ($10 \mathrm{~cm}^{3}$) was added $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ dimethylamine in THF ($\left.4.11 \mathrm{~cm}^{3}, 8.22 \mathrm{mmol}, 6 \mathrm{eq}.\right)$; the mixture was kept at rt for 3 h and then concentrated. The residue was dissolved in chloroform and the solution was washed successively with 0.5 mol dm^{-3} aq. HCl , water, saturated aq. NaHCO_{3}, and water, and concentrated. FCC (toluene-ethyl acetate, $60: 40$) of the residue gave the hemiacetal 43 ($790 \mathrm{mg}, 88 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+16\left(c 2, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.34$ (solvent C) (Found: C, 52.7; H, 5.5. $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{FO}_{16}$ requires $\left.\mathrm{C}, 52.9 ; \mathrm{H}, 5.4 \%\right) ; \delta_{\mathrm{H}} 1.99$ $(\times 2), 2.09,2.13$ and $2.17(15 \mathrm{H}, 4 \mathrm{~s}, 5 \times \mathrm{Ac}), 3.93(1 \mathrm{H}$, ddd, $\left.J_{5^{\prime}, 6 a^{\prime}} 6.1,5^{\prime}-\mathrm{H}\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J_{6 a^{\prime}, 6 b^{\prime}} 11.3,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.08-4.23$ $\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}^{\mathrm{a}}\right), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 66^{\prime}} 6.7,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, $4.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{OH}), 4.49\left(1 \mathrm{H}\right.$, br d, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.9,6-\mathrm{H}^{\mathrm{b}}\right), 4.65$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{2}} 8.0,1^{\prime}-\mathrm{H}\right), 5.02\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.5,3^{\prime}-\mathrm{H}\right), 5.22(1 \mathrm{H}$, ddd, $J_{3,4} 7.7, J_{3, \mathrm{~F}} 47.0,3-\mathrm{H}$), $5.25\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right), 5.36$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 5.38\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 0.9,4^{\prime}-\mathrm{H}\right), 5.56(1 \mathrm{H}$, ddd, $\left.J_{1,2} 2.1, J_{2,3} 3.7, J_{2, \mathrm{~F}} 6.7,2-\mathrm{H}\right)$ and $7.46-8.11(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

2,3,4,6-Tetra-O-acetyl- β-d-galactopyranosyl-($1 \rightarrow 4$)-6-O-acetyl-2-O-benzoyl-3-deoxy-3-fluoro- α-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 44

This compound was prepared by the reaction of the hemiacetal 43 ($344 \mathrm{mg}, 0.52 \mathrm{mmol}$) with $\mathrm{PCl}_{3}\left(0.21 \mathrm{~cm}^{3}, 2.39 \mathrm{mmol}, 4.6\right.$ eq.), imidazole ($550 \mathrm{mg}, 8.1 \mathrm{mmol}, 5.2$ eq.) and $\mathrm{Et}_{3} \mathrm{~N}\left(1.19 \mathrm{~cm}^{3}\right.$, 8.53 mmol , 5.5 eq.) in $\mathrm{CH}_{3} \mathrm{CN}\left(24 \mathrm{~cm}^{3}\right)$ followed by hydrolysis with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ TEA hydrogen carbonate $\left(5 \mathrm{~cm}^{3}\right)$ as described for the preparation of the disaccharide H-phosphonate 24. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N},(95: 4.9: 0.1) \rightarrow(85: 14.9: 0.1)\right]$ gave the H -phosphonate 44 ($326 \mathrm{mg}, 76 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+21\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.14$ (solvent $\left.D\right) ; \delta_{\mathrm{H}} 1.32(9 \mathrm{H}, \mathrm{t}$, $\left.J 7.3,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.97,1.98,2.07,2.12$ and $2.16(15 \mathrm{H}, 5 \mathrm{~s}$, $5 \times \mathrm{Ac}), 3.05\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH} H_{2} \mathrm{~N}\right), 3.84\left(1 \mathrm{H}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 6.1\right.$, $\left.5^{\prime}-\mathrm{H}\right), 4.02\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 b^{\prime}} 11.3,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.09\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 b^{\prime}} 7.1\right.$, $6^{\prime}-\mathrm{H}^{\mathrm{b}}$), 4.09-4.17 ($3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}^{\mathrm{a}}$), $4.38(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J_{\text {bb, } 6 \mathrm{a}} 10.2,6-\mathrm{H}^{\mathrm{b}}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right), 4.93(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3^{\prime}, 4^{\prime}} 3.5,3^{\prime}-\mathrm{H}\right), 5.16\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.4,2^{\prime}-\mathrm{H}\right), 5.18(1 \mathrm{H}$, ddd, $\left.J_{3,4} 8.1, J_{3, \mathrm{~F}} 47.3,3-\mathrm{H}\right), 5.30\left(1 \mathrm{H}\right.$, dd, $\left.J_{4^{\prime}, 5^{\prime}} 1.0,4^{\prime}-\mathrm{H}\right), 5.53(1 \mathrm{H}$, ddd, $\left.J_{2,3} 3.7, J_{2, \mathrm{~F}} 6.0,2-\mathrm{H}\right), 5.65\left(1 \mathrm{H}\right.$, ddd, $J_{1,2} 2.2, J_{1, \mathrm{~F}} 4.9$, $\left.J_{1, \mathrm{P}} 7.0,1-\mathrm{H}\right), 6.97\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 638.0, \mathrm{HP}\right)$ and $7.37-8.02(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{P}}-0.30$; $\operatorname{ESMS}(-)$ data: $m / z 720.96\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}\right.\right.$ $-\mathrm{H}]^{-}$) (expected $\mathrm{m} / \mathrm{z}, 721.16 ; \mathrm{C}_{35} \mathrm{H}_{51} \mathrm{FNO}_{18} \mathrm{P}$ requires M, 823.28).

Dec-9-enyl 2,3,4,6-tetra-O-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-6-O-acetyl-2-O-benzoyl-3-deoxy-3-fluoro- α-D-mannopyranosyl phosphate, triethylammonium salt 45

This compound was prepared by condensation of the disaccharide H-phosphonate 44 ($287 \mathrm{mg}, 0.35 \mathrm{mmol}$) and dec-9-en1 -ol ($0.125 \mathrm{~cm}^{3}, 0.7 \mathrm{mmol}, 2$ eq.) in pyridine ($2 \mathrm{~cm}^{3}$) in the presence of trimethylacetyl chloride $\left(0.11 \mathrm{~cm}^{3}, 0.88\right.$ $\mathrm{mmol}, 2.5 \mathrm{eq}$.) followed by oxidation with iodine ($177 \mathrm{mg}, 0.7$ mmol, 2 eq.) in pyridine-water ($95: 5 ; 4 \mathrm{~cm}^{3}$) as described for the synthesis of the phosphodiester 25. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\right.$ $\mathrm{Et}_{3} \mathrm{~N},(95: 4.9: 0.1) \longrightarrow(90: 9.9: 0.1)$] afforded the phosphodiester 45 ($261 \mathrm{mg}, 77 \%$) as an amorphous solid; $[\alpha]_{\mathrm{D}}^{24}+14$ (c 2, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.31$ (solvent D); δ_{H} (inter alia) $1.19(9 \mathrm{H}, \mathrm{t}, J 7.4,3 \times$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.96,1.97,2.06,2.13$ and $2.16(15 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{Ac})$,
$3.07\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.85-3.93\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 6.3, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.2,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.16$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 b^{\prime}} 6.9,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.16-4.26(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and $\left.6-\mathrm{H}^{\mathrm{a}}\right), 4.61\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right), 4.99\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.5\right.$, $\left.3^{\prime}-\mathrm{H}\right), 5.23\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right), 5.25\left(1 \mathrm{H}\right.$, ddd, $J_{2,3} 3.7$, $\left.J_{3,4} 8.2, J_{3, \mathrm{~F}} 47.2 .3-\mathrm{H}\right), 5.36\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 0.9,4^{\prime}-\mathrm{H}\right), 5.62-5.68$ $(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $2-\mathrm{H}), 5.79\left[1 \mathrm{H}\right.$, ddt, $J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.7, J_{c i s} 10.2$, $\left.J_{\text {trans }} 16.9, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right]$ and $7.41-8.08(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{P}}-2.67$; ESMS(-) data: $m / z 874.92\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right.$) (expected $m / z, 875.30 ; \mathrm{C}_{45} \mathrm{H}_{69} \mathrm{FNO}_{19} \mathrm{P}$ requires $M, 977.42$).

Benzyl 2,3,4-tri-O-benzoyl-a-d-mannopyranoside 47

The tribenzoate 47 was prepared from benzyl α-d-mannopyranoside 46 in 60% yield by conventional tritylation (trityl chloride in pyridine) followed by benzoylation (benzoyl chloride in pyridine) and detritylation (80% aq. AcOH), as an amorphous solid; $[a]_{\mathrm{D}}^{24}-104\left(c 2, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.31$ (solvent A) (Found: $\mathrm{C}, 70.3 ; \mathrm{H}, 5.2 . \mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{9}$ requires $\mathrm{C}, 70.1 ; \mathrm{H}, 5.2 \%$); δ_{H} $2.71\left(1 \mathrm{H}, \mathrm{t}, J_{6, \text { OH }} 5.3,6-\mathrm{OH}\right), 3.79\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.11(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{5,6} 3.0,5-\mathrm{H}\right), 4.73$ and $4.87\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\text {gem }} 12.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.23$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.9,1-\mathrm{H}\right), 5.77\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.4,2-\mathrm{H}\right), 5.88(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=10.1,4-\mathrm{H}\right), 6.06(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.15-8.17(20 \mathrm{H}$, $\mathrm{m}, 4 \times \mathrm{Ph}$).

Benzyl 2,3,4-tri-O-benzoyl-6-deoxy-6-fluoro- α-Dmannopyranoside 48

To a solution of the tribenzoate $47(800 \mathrm{mg}, 1.37 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ was added DAST $\left(0.27 \mathrm{~cm}^{3}\right.$, $2.05 \mathrm{mmol}, 1.5 \mathrm{eq}$.) at $-25^{\circ} \mathrm{C}$. The mixture was kept at rt overnight and then refluxed for 8 h . Methanol $\left(0.5 \mathrm{~cm}^{3}\right)$ was added, the mixture was diluted with dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$, washed successively with saturated aq. NaHCO_{3} and water, and concentrated. FCC (toluene-ethyl acetate, $98: 2$) of the residue gave the fluoride $\mathbf{4 8}$ ($354 \mathrm{mg}, 44 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}-111\left(c 2, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.76$ (solvent A) (Found: C, 70.3; H, 5.05. $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{FO}_{8}$ requires C, 69.9; H, 5.0%); $\delta_{\mathrm{H}} 4.23$ $\left(1 \mathrm{H}\right.$, dddd, $\left.J_{5,6 \mathrm{a}} 2.3, J_{5, \mathrm{~F}} 22.9,5-\mathrm{H}\right), 4.49\left(1 \mathrm{H}\right.$, ddd, $J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.4$, $\left.J_{6 \mathrm{a}, \mathrm{F}} 47.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.55\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{~b}} 4.7, J_{6 \mathrm{~b}, \mathrm{~F}} 47.5,6-\mathrm{H}^{\mathrm{b}}\right), 4.62$ and $4.78\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\text {gem }} 11.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.9\right.$, $1-\mathrm{H}), 5.67\left(1 \mathrm{H}\right.$, dd $\left.J_{2,3} 3.0,2-\mathrm{H}\right), 5.82\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=10.1\right.$, $4-\mathrm{H}), 5.88(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.05-8.20(20 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph})$; $\delta_{\mathrm{F}}-231.0$ (dt, J 22.9 and 47.5).

Benzyl 6-deoxy-6-fluoro-2,3-O-isopropylidene- α-dmannopyranoside 49

To a solution of compound $\mathbf{4 8}(278 \mathrm{mg}, 0.48 \mathrm{mmol})$ in MeOH $\left(5 \mathrm{~cm}^{3}\right)$ was added $4.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methanolic $\mathrm{MeONa}\left(0.22 \mathrm{~cm}^{3}\right)$ and the mixture was kept at rt for 2 h . The solution was deionized with Dowex $50 \mathrm{~W}-\mathrm{X} 4\left(\mathrm{H}^{+}\right)$, the resin was filtered off and washed with methanol, and the filtrate was concentrated. The residue was dissolved in acetone ($5 \mathrm{~cm}^{3}$), 2,2-dimethoxypropane $\left(0.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mg})$ were added, and the mixture was stirred for 15 min at rt . After neutralization with a few drops of $\mathrm{Et}_{3} \mathrm{~N}$, the mixture was concentrated. FCC (tolueneethyl acetate, $92: 8$) of the residue afforded the alcohol derivative 49 ($128 \mathrm{mg}, 85 \%$); $[a]_{\mathrm{D}}^{24}+60\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 52-54{ }^{\circ} \mathrm{C}$ (from hexane); $R_{\mathrm{f}} 0.34$ (solvent A) (Found: C, 61.8; H, 6.8 . $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{FO}_{5}$ requires C, $\left.61.5 ; \mathrm{H}, 6.8 \%\right)$; $\delta_{\mathrm{H}} 1.38$ and $1.55(6 \mathrm{H}, 2 \mathrm{~s}$, $\mathrm{Me}_{2} \mathrm{C}$), 3.48 ($1 \mathrm{H}, \mathrm{d}, J_{4, \text { OH }} 4.3,4-\mathrm{OH}$), $3.75\left(1 \mathrm{H}\right.$, ddd, $J_{3,4} 6.3$, $4-\mathrm{H}), 3.85\left(1 \mathrm{H}\right.$, dddd, $\left.J_{4,5} 9.9, J_{5, \mathrm{~F}} 24.5,5-\mathrm{H}\right), 4.22(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 4.58$ and $4.77\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\mathrm{gem}} 11.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 2.2, J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.2, J_{6 \mathrm{a}, \mathrm{F}} 47.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.70(1 \mathrm{H}$, ddd, $\left.J_{5,6 \mathrm{~b}} 4.1, J_{6 \mathrm{~b}, \mathrm{~F}} 47.5,6-\mathrm{H}^{\mathrm{b}}\right), 5.18(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$ and $7.28-7.43(5 \mathrm{H}$, m, Ph).

Benzyl 2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyl-(1 $\rightarrow 4$)-6-deoxy-6-fluoro-2,3-O-isopropylidene- α-d-mannopyranoside 50

The reaction of the derivative $49(431 \mathrm{mg}, 1.38 \mathrm{mmol})$ and
acetobromogalactose $\mathbf{1 9}$ ($850 \mathrm{mg}, 2.07 \mathrm{mmol}, 1.5$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(18 \mathrm{~cm}^{3}\right)$ in the presence of silver triflate ($610 \mathrm{mg}, 2.38 \mathrm{mmol}$, 1.72 eq.) and $2,4,6$-collidine ($0.245 \mathrm{~cm}^{3}$, $1.86 \mathrm{mmol}, 1.35 \mathrm{eq}$.) was performed as described for the preparation of the disaccharide 20. FCC (toluene-ethyl acetate, $9: 1$) afforded the β linked disaccharide $\mathbf{5 0}(712 \mathrm{mg}, 80 \%) ;[a]_{\mathrm{D}}^{4}+37\left(c 2, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}$ $121-123{ }^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $R_{\mathrm{f}} 0.57$ (solvent B) (Found: C, 56.0; H, 6.1. $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{FO}_{14}$ requires C, 56.1; H, 6.1\%); $\delta_{\mathrm{H}} 1.36$ and $1.56\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{C}\right), 2.01,2.06,2.08$ and 2.17 $(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 3.73\left(1 \mathrm{H}\right.$, dddd, $\left.J_{5,6 \mathrm{a}} 1.5, J_{5, \mathrm{~F}} 26.2,5-\mathrm{H}\right), 3.83$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5} 10.1,4-\mathrm{H}\right), 3.96\left(1 \mathrm{H}, \mathrm{dt}, J_{5^{\prime}, 6^{\prime}} 6.3,5^{\prime}-\mathrm{H}\right), 4.18(1 \mathrm{H}$, d, $\left.J_{2,3} 5.8,2-\mathrm{H}\right), 4.18\left(2 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}_{2}\right), 4.43\left(1 \mathrm{H}, \mathrm{ddd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.2\right.$, $\left.J_{6, \mathrm{~F}} 48.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.44\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 7.5,3-\mathrm{H}\right), 4.57(1 \mathrm{H}, \mathrm{ddd}$, $\left.J_{5,6 \mathrm{~b}} 2.7, J_{6 \mathrm{~b}, \mathrm{~F}} 48.5,6-\mathrm{H}^{\mathrm{b}}\right), 4.56$ and $4.68\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\mathrm{gem}} 11.8\right.$, $\left.{ }^{\mathrm{C}} \mathrm{H}_{2} \mathrm{Ph}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.1,1^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.5\right.$, $\left.3^{\prime}-\mathrm{H}\right), 5.17(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.24\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right), 5.41$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 1.1,4^{\prime}-\mathrm{H}\right)$ and $7.29-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Benzyl 2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyl-(1 \rightarrow 4)-2,3-di-O-benzoyl- 6 -deoxy- 6 -fluoro- α-D-mannopyranoside 51

A solution of the isopropylidene derivative $\mathbf{5 0}(800 \mathrm{mg}, 1.25$ mmol) and pyridinium perchlorate (500 mg) in 90% aq. acetonitrile $\left(15 \mathrm{~cm}^{3}\right)$ was heated at $75-80^{\circ} \mathrm{C}$ for 4 h and then concentrated. The residue was dissolved in chloroform (100 $\left.\mathrm{cm}^{3}\right)$, and the solution was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was subjected to benzoylation with benzoyl chloride $\left(1 \mathrm{~cm}^{3}\right)$ in pyridine $\left(10 \mathrm{~cm}^{3}\right)$ for 2 h at rt followed by standard aqueous work-up. FCC (toluene-ethyl acetate, $85: 15$) produced the disaccharide $51(910 \mathrm{mg}, 90 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}-31\left(c 2, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.38$ (solvent B) (Found: C, 60.8; H, 5.3. $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{FO}_{16}$ requires C, $60.7 ; \mathrm{H}$, $5.35 \%) ; \delta_{\mathrm{H}} 1.85,1.97,2.04$ and $2.10(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 3.34$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5^{\prime}, 6 a^{\prime}} 5.6,5^{\prime}-\mathrm{H}\right), 3.43\left(1 \mathrm{H}\right.$, dd, $\left.J_{6 \mathrm{a}^{\prime}, 6 b^{\prime}} 10.9,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right)$, $3.78\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 8.2,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.95\left(1 \mathrm{H}\right.$, dddd, $J_{5,6 \mathrm{a}} 0.9, J_{5, \mathrm{~F}}$ 31.6, $5-\mathrm{H}), 4.45\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.55(1 \mathrm{H}$, ddd, $\left.J_{6 a, 6 \mathrm{~b}} 10.5, J_{6 \mathrm{a}, \mathrm{F}} 47.9,6-\mathrm{H}^{\mathrm{a}}\right), 4.68$ and $4.76\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\mathrm{gem}} 12.0\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2} 8.0,1^{\prime}-\mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{~b}} 2.2\right.$, $\left.J_{6 \mathrm{~b}, \mathrm{~F}} 47.9,6-\mathrm{H}^{\mathrm{b}}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4,3^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}\right.$ $1.9,1-\mathrm{H}), 5.16\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.3,2^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 1.0\right.$, $\left.4^{\prime}-\mathrm{H}\right), 5.70\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.6,2-\mathrm{H}\right), 5.82(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and 7.17-8.05 ($15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}$).

2,3,4,6-Tetra-O-acetyl- β-d-galactopyranosyl-($\mathbf{1} \rightarrow \mathbf{4}$)-2,3-di-O-benzoyl-6-deoxy-6-fluoro- α-d-mannopyranose 52

A solution of the benzyl glycoside $51(600 \mathrm{mg}, 0.74 \mathrm{mmol})$ in a mixture of $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ and ethyl acetate $\left(5 \mathrm{~cm}^{3}\right)$ containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(600 \mathrm{mg})$ was stirred under a slight overpressure of hydrogen at rt for 24 h , filtered through a Celite pad, and concentrated. FCC (toluene-ethyl acetate, $65: 35$) of the residue gave the hemiacetal $52(481 \mathrm{mg}, 90 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{24}-78\left(c \quad 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.16$ (solvent B) (Found: C, 57.1; H, 5.3. $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{FO}_{16}$ requires C, 56.7; H, 5.2\%); $\delta_{\mathrm{H}} 1.84$, 1.97, 2.05 and $2.10(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 3.41\left(1 \mathrm{H}, \mathrm{ddd}, J_{S^{\prime}, 6^{\prime}} 5.7\right.$, $\left.5^{\prime}-\mathrm{H}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 10.4,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 b^{\prime}} 7.4\right.$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.95\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{1, \mathrm{OH}} 3.0,1-\mathrm{OH}\right), 4.26\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J_{5, \mathrm{~F}}$ $31.4,5-\mathrm{H}), 4.46\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.67(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $\left.J_{5,6 \mathrm{a}}<1, J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.6, J_{6 \mathrm{a}, \mathrm{F}} 48.6,6-\mathrm{H}^{\mathrm{a}}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right)$, $4.78\left(1 \mathrm{H}\right.$, ddd, $J_{5,6 \mathrm{~b}} 2.2, J_{6 \mathrm{~b}, \mathrm{~F}} 48.6,6-\mathrm{H}^{\mathrm{b}}$), $4.93\left(1 \mathrm{H}\right.$, dd, $J_{3^{\prime}, 4^{\prime}} 3.4$, $\left.3^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}\right.$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 10.4,2^{\prime}-\mathrm{H}\right), 5.18\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 0.9\right.$, $\left.4^{\prime}-\mathrm{H}\right), 5.43(1 \mathrm{H}$, br s, $1-\mathrm{H}), 5.67\left(1 \mathrm{H}\right.$, dd, $\left.J_{1,2} 1.9, J_{2,3} 3.5,2-\mathrm{H}\right)$, $5.86(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.17-8.10(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$.

2,3,4,6-Tetra-O-acetyl $\boldsymbol{\beta}$-d-galactopyranosyl-(1 $\rightarrow 4$)-2,3-di-O-benzoyl-6-deoxy-6-fluoro- α-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 53

This compound was prepared by the reaction of the hemiacetal $52(285 \mathrm{mg}, 0.40 \mathrm{mmol})$ with $\mathrm{PCl}_{3}\left(0.157 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}, 4.5\right.$ eq.), imidazole ($415 \mathrm{mg}, 6.1 \mathrm{mmol}, 5.1$ eq.) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.89 \mathrm{~cm}^{3}\right.$,
$6.4 \mathrm{mmol}, 5.3$ eq.) in $\mathrm{CH}_{3} \mathrm{CN}\left(16 \mathrm{~cm}^{3}\right)$ followed by hydrolysis with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ TEA hydrogen carbonate $\left(5 \mathrm{~cm}^{3}\right)$ as described for the preparation of the disaccharide H -phosphonate 24 $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N},(95: 4.9: 0.1) \rightarrow(85: 14.9: 0.1)\right]$ afforded the H-phosphonate 53 ($300 \mathrm{mg}, 86 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}-46\left(c 2, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.23$ (solvent D); $\delta_{\mathrm{H}} 1.37$ $\left(9 \mathrm{H}, \mathrm{t}, J 7.1,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.79,1.95,2.02$ and $2.08(12 \mathrm{H}$, $4 \mathrm{~s}, 4 \times \mathrm{Ac}), 3.10\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.39(1 \mathrm{H}$, ddd, $\left.J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 5.7,5^{\prime}-\mathrm{H}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 10.5,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.76(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5^{\prime}, 6 b^{\prime}} 7.6,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.24\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J_{5, \mathrm{~F}} 31.6,5-\mathrm{H}\right), 4.44(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=9.8,4-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.8,1^{\prime}-\mathrm{H}\right), 4.67(1 \mathrm{H}$, br dd, $\left.J_{5,6 \mathrm{a}}<1, J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.4, J_{6 \mathrm{a}, \mathrm{F}} 48.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.75\left(1 \mathrm{H}\right.$, ddd, $J_{5,6 \mathrm{~b}}$ $\left.2.0, J_{6 b, F} 48.5,6-\mathrm{H}^{\mathrm{b}}\right), 4.89\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4} 3.4,3^{\prime}-\mathrm{H}\right), 5.14(1 \mathrm{H}$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}\right.$, dd, $\left.J_{4^{\prime}, 5^{\prime}} 1.1,4^{\prime}-\mathrm{H}\right), 5.68(1 \mathrm{H}$, dd, $\left.J_{2,3} 3.3,2-\mathrm{H}\right), 5.76\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 2.1, J_{1, \mathrm{P}} 9.2,1-\mathrm{H}\right), 5.79(1 \mathrm{H}$, dd, $3-\mathrm{H}), 7.03\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 636.0, \mathrm{HP}\right)$ and $7.30-8.05(10 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{P}} 1.48 ; \operatorname{ESMS}(-)$ data: $\mathrm{m} / \mathrm{z} 782.9(100 \%$, [M $\left.\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$) (expected $m / z, 783.18 ; \mathrm{C}_{40} \mathrm{H}_{53} \mathrm{FNO}_{18} \mathrm{P}$ requires M, 885.30).

Dec-9-enyl 2,3,4,6-tetra-O-acetyl- β-d-galactopyranosyl-($1 \longrightarrow 4$)-2,3-di-O-benzoyl-6-deoxy-6-fluoro- α-d-mannopyranosyl phosphate, triethylammonium salt 54
This compound was prepared by condensation of the disaccharide H-phosphonate 53 ($265 \mathrm{mg}, 0.30 \mathrm{mmol}$) and dec-9-en1 -ol ($0.11 \mathrm{~cm}^{3}, 0.6 \mathrm{mmol}, 2.0$ eq. $)$ in pyridine ($3 \mathrm{~cm}^{3}$) in the presence of trimethylacetyl chloride ($0.09 \mathrm{~cm}^{3}, 0.75 \mathrm{mmol}$, 2.5 eq.) followed by oxidation with iodine ($152 \mathrm{mg}, 0.6 \mathrm{mmol}$, 2.0 eq.) in pyridine-water ($95: 5 ; 4 \mathrm{~cm}^{3}$) as described for the synthesis of the phosphodiester 25. FCC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\right.$ $\left.\mathrm{Et}_{3} \mathrm{~N},(95: 4.9: 0.1) \rightarrow(91: 8.9: 0.1)\right]$ gave the phosphodiester $54(230 \mathrm{mg}, 74 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}-47\left(c 1, \mathrm{CHCl}_{3}\right)$; $R_{\mathrm{f}} 0.32$ (solvent D); δ_{H} (inter alia) $1.29(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.71,1.87,1.94$ and $2.00(12 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}), 3.03$ $\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.31\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 5.7,5^{\prime}-\mathrm{H}\right), 3.38$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 b^{\prime}} 10.8,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.69\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 7.9,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.88$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}$), $4.20\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J_{5, \mathrm{~F}} 31.7,5-\mathrm{H}\right), 4.35$ $\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 4.59$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.4, J_{6 \mathrm{a}, \mathrm{F}} 48.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.68\left(1 \mathrm{H}\right.$, ddd, $J_{5,6 \mathrm{~b}} 2.0$, $\left.J_{6 \mathrm{~b}, \mathrm{~F}} 48.5,6-\mathrm{H}^{\mathrm{b}}\right), 4.82\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.5,3^{\prime}-\mathrm{H}\right), 5.06(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 1.0,4^{\prime}-\mathrm{H}\right), 5.62-5.80(4 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H}$ and $3-\mathrm{H}$, and $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$ and 7.23-7.97 $(10 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-1.54$; $\operatorname{ESMS}(-)$ data: $m / z 937.0(100 \%$, [M $\left.\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}^{-}\right)\left(\right.$expected m / z, 937.31; $\mathrm{C}_{50} \mathrm{H}_{71} \mathrm{FNO}_{19} \mathrm{P}$ requires M, 1039.43).

1,4-Di-O-acetyl-2,3-di-O-benzoyl-6-deoxy-6-fluoro- α-D-galactopyranose 56

To a solution of methyl 2,3 -di-O-benzoyl-6-deoxy-6-fluoro- β-dgalactopyranoside ${ }^{23} 55\left(560 \mathrm{mg}, 1.39 \mathrm{mmol}\right.$) in pyridine ($5 \mathrm{~cm}^{3}$) was added acetic anhydride $\left(2.5 \mathrm{~cm}^{3}\right)$; the mixture was kept at rt overnight and then concentrated. The residue was dissolved in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ and the solution was washed successively with $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl and water, and concentrated. To a solution of the residue in acetic anhydride $\left(10 \mathrm{~cm}^{3}\right)$ was added sulfuric acid $\left(0.08 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The solution was kept at $0^{\circ} \mathrm{C}$ for 30 min and at rt for 4 h , then poured into icewater, and the mixture was stirred for 2 h . The precipitate formed was filtered off, then dissolved in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$, and the solution was washed successively with saturated aq. NaHCO_{3} and water, and concentrated. Crystallization of the residue from ethanol gave the diacetate $56(533 \mathrm{mg}, 81 \%)$; $[a]_{\mathrm{D}}^{24}+150\left(c 2, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 174-175{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.47$ (solvent A) (Found: $\mathrm{C}, 61.1 ; \mathrm{H}, 4.9 . \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{FO}_{9}$, requires $\mathrm{C}, 60.8 ; \mathrm{H}, 4.9 \%$); $\delta_{\mathrm{H}} 2.19$ and $2.21(6 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}), 4.38-4.66(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $\left.6-\mathrm{H}_{2}\right), 5.82-5.85(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}$ and $4-\mathrm{H}), 6.65\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}\right.$ 2.1, $1-\mathrm{H}$) and 7.36-7.97 $(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$; δ_{C} (inter alia) 67.6 , 68.6 (C-2 and C-3), 68.2 (d, $J_{4, \mathrm{~F}} 5.2, \mathrm{C}-4$), 70.1 (d, $J_{5, \mathrm{~F}} 23.5$, C-5), 81.3 (d, $\left.J_{6, F} 172.4, \mathrm{C}-6\right)$ and $90.2(\mathrm{C}-1)$.

Benzyl 6-O-benzoyl-2,3-O-isopropylidene- α-D-mannopyranoside

 59Benzyl 2,3-O-isopropylidene- α-D-mannopyranoside 58 (735 mg , 2.37 mmol) \{prepared in 72% yield from benzyl α-Dmannopyranoside 46 and 2,2-dimethoxypropane followed by controlled hydrolysis, $[\alpha]_{\mathrm{D}}^{20}+63\left(c \quad 1, \mathrm{CHCl}_{3}\right)$, $\mathrm{mp} 81-82{ }^{\circ} \mathrm{C}$ (from diethyl ether-hexane) (Found: C, 61.7; H, 7.2. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6}$ requires C, $61.9 ; \mathrm{H}, 7.15 \%$) as described for the preparation ${ }^{24}$ of methyl 2,3-O-isopropylidene- α-D-mannopyranoside \} and benzoyl cyanide ($315 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.01 \mathrm{eq}$.), along with a few drops of $\mathrm{Et}_{3} \mathrm{~N}$, were stirred in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ for approximately 30 min . When TLC (ethyl acetate) indicated the reaction was complete, the solution was diluted with methanol $\left(10 \mathrm{~cm}^{3}\right)$ and stirred for a further 30 min , after which the solution was concentrated. A further portion of methanol $\left(5 \mathrm{~cm}^{3}\right)$ was evaporated from the residue. FCC of the residue (toluene-ethyl acetate, $80: 20$) gave the monobenzoate $59(805 \mathrm{mg}, 82 \%)$, which crystallized on drying in vacuum over $\mathrm{CaCl}_{2} ;[a]_{\mathrm{D}}^{24}+14$ (c 1 , CHCl_{3}); mp $57-60^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.31$ (solvent B) (Found: C, $66.9 ; \mathrm{H}$, 6.3. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.65 ; \mathrm{H}, 6.3 \%$); $\delta_{\mathrm{H}} 1.32$ and $1.46(6 \mathrm{H}$, $\left.2 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{C}\right), 3.65\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3,4} 6.5, J_{4, \text { ОН }} 3.0,4-\mathrm{H}\right), 3.95(1 \mathrm{H}$, ddd, $\left.J_{4.5} 9.7,5-\mathrm{H}\right), 4.20(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 4.50(1 \mathrm{H}$, dd, $\left.J_{5,6 \mathrm{a}} 2.7, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right), 4.53$ and $4.75\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\text {gem }} 11.7\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.68\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 5.4,6-\mathrm{H}^{\mathrm{b}}\right), 5.12(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$ and $7.20-8.00(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph})$.

Benzyl 4-O-acetyl-2,3-di-O-benzoyl-6-deoxy-6-fluoro- β-d-galactopyranosyl-($1 \rightarrow 4$)-6-O-benzoyl-2,3-O-isopropylidene-$\boldsymbol{\alpha}$-D-mannopyranoside 60

To a solution of the diacetate $\mathbf{5 6}(660 \mathrm{mg}, 1.39 \mathrm{mmol})$ in a mixture of acetic acid $\left(9 \mathrm{~cm}^{3}\right)$ and acetic anhydride $\left(1 \mathrm{~cm}^{3}\right)$ was added a 33% solution of HBr in AcOH at $0{ }^{\circ} \mathrm{C}$. The mixture was kept at rt for 4 h , diluted with dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$, washed successively with ice-cold water, cold saturated aq. NaHCO_{3} and water, dried by filtration through cotton wool, and concentrated to give the galactosyl bromide $57(686 \mathrm{mg}$, quant.) $\left[R_{\mathrm{f}} 0.61\right.$ (solvent $\left.A\right)$; $\delta_{\mathrm{H}} 2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 4.56(1 \mathrm{H}$, ddd, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.0, J_{6 \mathrm{a}, \mathrm{F}} 46.2,6-\mathrm{H}^{\mathrm{a}}\right)$, $4.60\left(1 \mathrm{H}, \mathrm{ddd}, J_{6 \mathrm{~b}, \mathrm{~F}} 46.2,6-\mathrm{H}^{\mathrm{b}}\right)$, $4.74\left(1 \mathrm{H}, \mathrm{ddt}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=5.5, J_{5, \mathrm{~F}} 15.3,5-\mathrm{H}\right), 5.62(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2,3} 10.4,2-\mathrm{H}\right), 5.84\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5} 1.3,4-\mathrm{H}\right), 5.91(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3,4} 3.3,3-\mathrm{H}\right), 6.90\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 4.0,1-\mathrm{H}\right)$ and $7.30-8.07(10 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Ph})$].
The reaction of the bromide $57(664 \mathrm{mg}, 1.34 \mathrm{mmol}, 1.11 \mathrm{eq}$.) and the acceptor $59(500 \mathrm{mg}, 1.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(18 \mathrm{~cm}^{3}\right)$ in the presence of silver triflate ($396 \mathrm{mg}, 1.54 \mathrm{mmol}, 1.27 \mathrm{eq}$.$) and$ 2,4,6-collidine ($0.16 \mathrm{~cm}^{3}, 1.21 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was performed as described for the preparation of the disaccharide 20. FCC (toluene-ethyl acetate, $93: 7$) afforded the β-linked disaccharide $\mathbf{6 0}(884 \mathrm{mg}, 88 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+82\left(c 2, \mathrm{CHCl}_{3}\right)$; $R_{\mathrm{f}} 0.43$ (solvent A) (Found: C, 65.2; H, 5.4. $\mathrm{C}_{45} \mathrm{H}_{45} \mathrm{FO}_{14}$ requires C, $65.2 ; \mathrm{H}, 5.5 \%)$; $\delta_{\mathrm{H}} 1.39$ and $1.60\left(6 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{C}\right), 2.16(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ac}), 3.91-4.02(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 4.10\left(1 \mathrm{H}\right.$, dddd, $J_{5^{\prime}, 6 \mathrm{a}^{\prime}}$ $\left.5.3, J_{5^{\prime} \cdot F} 13.6,5^{\prime}-\mathrm{H}\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 6.1,2-\mathrm{H}\right), 4.27(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5,6 \mathrm{a}} 4.6, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.9,6-\mathrm{H}^{\mathrm{a}}\right), 4.49$ and $4.69\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\text {gem }} 11.8\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.51(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.52\left(1 \mathrm{H}\right.$, ddd, $J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 9.6, J_{6 a^{\prime}, \mathrm{F}}$ $\left.46.3,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.54\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.5,6-\mathrm{H}^{\mathrm{b}}\right), 4.62\left(1 \mathrm{H}\right.$, ddd, $J_{5^{\prime}, 6 \mathrm{bb}^{\prime}}$ $\left.6.4, J_{6 \mathrm{~b}^{\prime}, \mathrm{F}} 46.3,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.99\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{2}} 8.1,1^{\prime}-\mathrm{H}\right), 5.10(1 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H}), 5.44\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.5,3^{\prime}-\mathrm{H}\right)$, $5.69\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 1.1\right.$, $\left.4^{\prime}-\mathrm{H}\right), 5.76\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.4,2^{\prime}-\mathrm{H}\right)$ and $7.20-7.98(20 \mathrm{H}, \mathrm{m}$, $4 \times \mathrm{Ph}$).

Benzyl 4-O-acetyl-2,3-di-O-benzoyl-6-deoxy-6-fluoro- β-d-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzoyl- α-D-mannopyranoside 61

This compound was prepared by the reaction of the isopropylidene derivative 60 ($802 \mathrm{mg}, 0.97 \mathrm{mmol}$) and pyridinium perchlorate (500 mg) in 90% aq. acetonitrile ($15 \mathrm{~cm}^{3}$) followed by conventional benzoylation with benzoyl chloride $\left(1 \mathrm{~cm}^{3}\right)$
in pyridine $\left(10 \mathrm{~cm}^{3}\right)$ as described for the preparation of the disaccharide 51. FCC (toluene-ethyl acetate, $95: 5$) gave the dibenzoate 61 ($938 \mathrm{mg}, 97 \%$); $[a]_{\mathrm{D}}^{24}+71$ (c 2, CHCl_{3}); $\mathrm{mp} 151-$ $153{ }^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $R_{\mathrm{f}} 0.50$ (solvent A) (Found: $\mathrm{C}, 67.4 ; \mathrm{H}, 4.9 . \mathrm{C}_{56} \mathrm{H}_{49} \mathrm{FO}_{16}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}, 4.95 \%$); $\delta_{\mathrm{H}} 1.94$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.67\left(1 \mathrm{H}\right.$, dddd, $\left.J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 6.6, J_{5^{\prime} \cdot \mathrm{F}} 11.7,5^{\prime}-\mathrm{H}\right), 3.90$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 9.6, J_{6 \mathrm{a}^{\prime}, \mathrm{F}} 46.7,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.11\left(1 \mathrm{H}\right.$, ddd, $J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.4$, $\left.J_{6 \mathrm{~b}^{\prime}, \mathrm{F}} 46.7,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.15\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 3.3,5-\mathrm{H}\right), 4.45(1 \mathrm{H}$, dd, $\left.J_{6 \mathrm{a}, 6 \mathrm{bb}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.63$ and $4.77\left(2 \mathrm{H}, \mathrm{AB} \mathrm{q}, J_{\mathrm{gem}} 12.0, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.66\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.9,6-\mathrm{H}^{\mathrm{b}}\right), 4.67\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.8,4-\mathrm{H}\right)$, $4.92\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.9,1-\mathrm{H}\right), 5.26$ (1 H , dd, $\left.J_{3^{\prime}, 4^{\prime}} 3.4,3^{\prime}-\mathrm{H}\right), 5.45\left(1 \mathrm{H}\right.$, dd, $\left.J_{4^{\prime}, 5^{\prime}} 1.0,4^{\prime}-\mathrm{H}\right), 5.65$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.5,2^{\prime}-\mathrm{H}\right), 5.68\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.3,2-\mathrm{H}\right), 5.90(1 \mathrm{H}$, dd, 3-H) and 7.18-8.10 ($30 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ph}$).

4-O-Acetyl-2,3-di-O-benzoyl-6-deoxy-6-fluoro- β-d-galacto-pyranosyl-($\mathbf{1} \rightarrow \mathbf{4}$)-2,3,6-tri-O-benzoyl- α-D-mannopyranose $\mathbf{6 2}$

A solution of the benzyl glycoside $\mathbf{6 1}(890 \mathrm{mg}, 0.89 \mathrm{mmol})$ in a mixture of THF and MeOH ($1: 1 ; 15 \mathrm{~cm}^{3}$) containing 20% $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(400 \mathrm{mg})$ was stirred under a slight overpressure of hydrogen at rt for 16 h . More catalyst (400 mg) was added and stirring was continued for another 24 h . The mixture was filtered through a Celite pad and the filtrate was concentrated. FCC (toluene-ethyl acetate, $85: 15$) of the residue gave the hemiacetal 62 ($652 \mathrm{mg}, 81 \%$); $[a]_{\mathrm{D}}^{24}+58$ (c 2, CHCl_{3}); $\mathrm{mp} 245-$ $247^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.14$ (solvent A) (Found: C, 65.0 ; H, 4.9. $\mathrm{C}_{49} \mathrm{H}_{43} \mathrm{FO}_{16}$ requires C, 64.9; H, 4.8\%); $\delta_{\mathrm{H}} 1.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.70(1 \mathrm{H}$, dddd, $\left.J_{5^{\prime}, 6 a^{\prime}} 6.7, J_{5^{\prime}, \mathrm{F}} 11.7,5^{\prime}-\mathrm{H}\right), 3.92\left(1 \mathrm{H}\right.$, ddd, $J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 9.6, J_{6 \mathrm{a}^{\prime}, \mathrm{F}} 46.7$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.98\left(1 \mathrm{H}, \mathrm{d}, J_{1, \mathrm{OH}} 4.1,1-\mathrm{OH}\right), 4.12\left(1 \mathrm{H}, \mathrm{ddd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.3\right.$, $\left.J_{6 b^{\prime}, F} 46.7,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.36\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{a}} 2.8,5-\mathrm{H}\right), 4.45(1 \mathrm{H}$, dd, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.69\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.72(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{5,6 \mathrm{~b}} 1.9,6-\mathrm{H}^{\mathrm{b}}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.28(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3^{\prime}, 4^{\prime}} 3.4,3^{\prime}-\mathrm{H}\right), 5.41\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.9,1-\mathrm{H}\right), 5.46\left(1 \mathrm{H}, \mathrm{dd}, 4^{\prime}-\mathrm{H}\right)$, $5.65\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.1,2^{\prime}-\mathrm{H}\right), 5.65\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.4,2-\mathrm{H}\right), 5.94$ $(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.20-8.12(25 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{Ph})$.

4-O-Acetyl-2,3-di-O-benzoyl-6-deoxy-6-fluoro- β-d-galacto-pyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-benzoyl- α-d-mannopyranosyl hydrogenphosphonate, triethylammonium salt 63

This compound was prepared by the reaction of the hemiacetal $62(357 \mathrm{mg}, 0.39 \mathrm{mmol})$ with $\mathrm{PCl}_{3}\left(0.157 \mathrm{~cm}^{3}, 1.8 \mathrm{mmol}, 4.6\right.$ eq.), imidazole ($415 \mathrm{mg}, 6.1 \mathrm{mmol}, 5.2 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.89 \mathrm{~cm}^{3}\right.$, $6.4 \mathrm{mmol}, 5.5$ eq.) in $\mathrm{CH}_{3} \mathrm{CN}\left(16 \mathrm{~cm}^{3}\right)$ followed by hydrolysis with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ TEA hydrogen carbonate $\left(5 \mathrm{~cm}^{3}\right)$ as described for the preparation of the disaccharide H -phosphonate 24. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N},(95: 4.9: 0.1) \rightarrow(85: 14.9: 0.1)\right]$ afforded the H-phosphonate $\mathbf{6 3}(368 \mathrm{mg}, 88 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+48\left(c 2, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.28$ (solvent D); $\delta_{\mathrm{H}} 1.25$ $\left(9 \mathrm{H}, \mathrm{t}, J 7.4,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.84(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.99(6 \mathrm{H}, \mathrm{q}, 3 \times$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.69\left(1 \mathrm{H}\right.$, dddd, $\left.J_{5^{\prime}, 6 a^{\prime}} 6.5, J_{5^{\prime}, \mathrm{F}} 11.9,5^{\prime}-\mathrm{H}\right), 3.81$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 9.6, J_{6 \mathrm{a}^{\prime}, \mathrm{F}} 46.8,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.97\left(1 \mathrm{H}\right.$, ddd, $J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.4$, $\left.J_{6 \mathrm{~b}^{\prime}, F} 46.8,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.29\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 3.1,5-\mathrm{H}\right), 4.40(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.53\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.4,4-\mathrm{H}\right), 4.55(1 \mathrm{H}$, dd, $\left.J_{5,6 \mathrm{~b}} 1.8,6-\mathrm{H}^{\mathrm{b}}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.15(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3^{\prime}, 4} 3.4,3^{\prime}-\mathrm{H}\right), 5.35\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 1.0,4^{\prime}-\mathrm{H}\right), 5.53\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3}\right.$ $\left.10.4,2^{\prime}-\mathrm{H}\right), 5.57\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.4,2-\mathrm{H}\right), 5.66\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 2.0\right.$, $\left.J_{1, \mathrm{P}} 8.9,1-\mathrm{H}\right), 5.81(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 6.93\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 638.0, \mathrm{HP}\right)$ and 7.12-7.98 ($25 \mathrm{H}, \mathrm{m} 5 \times \mathrm{Ph}$); $\delta_{\mathrm{P}} 1.51$; $\operatorname{ESMS}(-)$ data: $m / z 968.9\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)($expected m / z, 969.22 $\mathrm{C}_{55} \mathrm{H}_{59} \mathrm{FNO}_{18} \mathrm{P}$ requires $M, 1071.35$).

Dec-9-enyl 4-O-acetyl-2,3-di-O-benzoyl-6-deoxy-6-fluoro- β-d-galactopyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzoyl- α-D-mannopyranosyl phosphate, triethylammonium salt 64

This compound was prepared by condensation of the disaccharide H-phosphonate $\mathbf{6 3}$ ($338 \mathrm{mg}, 0.32 \mathrm{mmol}$) and dec-9-en1 -ol ($0.114 \mathrm{~cm}^{3}, 0.64 \mathrm{mmol}, 2.0$ eq.) in pyridine ($2.5 \mathrm{~cm}^{3}$) in the presence of trimethylacetyl chloride ($0.1 \mathrm{~cm}^{3}, 0.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.)
followed by oxidation with iodine ($163 \mathrm{mg}, 0.64 \mathrm{mmol}, 2.0$ eq.) in pyridine-water ($95: 5 ; 4 \mathrm{~cm}^{3}$) as described for the synthesis of the phosphodiester 25. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}\right.$, $(97: 2.9: 0.1) \longrightarrow(91: 8.9: 0.1)]$ gave the phosphodiester $\mathbf{6 4}$ $(285 \mathrm{mg}, 74 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+41\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ 0.39 (solvent D); δ_{H} (inter alia) $1.19(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.84(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.89\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.56$ $\left(1 \mathrm{H}\right.$, dddd, $\left.J_{5^{\prime}, 6 a^{\prime}} 6.5, J_{5^{\prime}, \mathrm{F}} 11.8,5^{\prime}-\mathrm{H}\right), 3.81\left(1 \mathrm{H}\right.$, ddd, $J_{6 a^{\prime}, 6 b^{\prime}} 9.6$, $\left.J_{6 a^{\prime}, \mathrm{F}} 47.8,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}\right), 3.97(1 \mathrm{H}$, ddd, $\left.J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.4, J_{6 \mathrm{~b}^{\prime}, \mathrm{F}} 47.8,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.32\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 2.9,5-\mathrm{H}\right), 4.40$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3,6-\mathrm{H}^{\mathrm{a}}\right), 4.54\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.9,6-\mathrm{H}^{\mathrm{b}}\right), 4.54$ $\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.14$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4,3^{\prime}-\mathrm{H}\right), 5.34\left(1 \mathrm{H}, \mathrm{dd}, J_{4^{\prime}, 5^{\prime}} 0.9,4^{\prime}-\mathrm{H}\right), 5.53$ ($\left.1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.4,2^{\prime}-\mathrm{H}\right), 5.59\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 2.1, J_{1, \mathrm{P}} 7.9,1-\mathrm{H}\right)$, $5.62\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.3,2-\mathrm{H}\right), 5.72\left[1 \mathrm{H}\right.$, ddt, $J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.7, J_{c i s}$ $10.2, J_{\text {trans }} 17.0, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}$], $5.82(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.12-$ $7.96(25 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-1.42$; $\operatorname{ESMS}(-)$ data: $m / z 1122.9$ $\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)$(expected $m / z, 1123.35 ; \mathrm{C}_{65} \mathrm{H}_{77^{-}}$ $\mathrm{FNO}_{19} \mathrm{P}$ requires $M, 1225.48$).

2,3,4-Tri-O-benzoyl- β-d-galactopyranosyl-($1 \rightarrow 4$)-1,2,3,6-tetra-O-benzoyl- α-d-mannopyranose 66

A solution of HCl in MeOH [prepared at $0{ }^{\circ} \mathrm{C}$ from acetyl chloride $\left(0.6 \mathrm{~cm}^{3}\right)$ and methanol $\left(14 \mathrm{~cm}^{3}\right)$] was added to a solution of disaccharide $\mathbf{6 5}$ ($1.60 \mathrm{~g}, 1.73 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$); the resulting solution was kept at rt for 25 h , concentrated, and pyridine ($3 \times 10 \mathrm{~cm}^{3}$) was evaporated off from the residue. The residue was dissolved in pyridine $\left(15 \mathrm{~cm}^{3}\right), p, p^{\prime}$ dimethoxytriphenylmethyl chloride $(820 \mathrm{mg}, 2.42 \mathrm{mmol}, 1.4$ eq.) was added, and the mixture was stirred at rt for 35 h before benzoyl chloride ($1.2 \mathrm{~cm}^{3}, 7.05 \mathrm{mmol}, 1.4 \mathrm{eq}$.) was also added to the stirred mixture at $0{ }^{\circ} \mathrm{C}$. After 10 h at $20^{\circ} \mathrm{C}$, the reaction mixture was diluted with dichloromethane and washed successively with saturated aq. NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was dissolved in dichloromethane ($70 \mathrm{~cm}^{3}$), and 2% trifluoroacetic acid in dichloromethane $\left(70 \mathrm{~cm}^{3}\right)$ was added at $0{ }^{\circ} \mathrm{C}$. After 2 min , the solution was washed in turn with saturated aq. NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. FCC [toluene-ethyl acetate, ($90: 10) \rightarrow(80: 20)$] of the residue gave the disaccharide derivative $66(1.22 \mathrm{~g}, 76 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+112(c 1$, CHCl_{3}); $R_{\mathrm{f}} 0.34$ (solvent B) (Found: C, $67.8 ; \mathrm{H}, 4.8 . \mathrm{C}_{61} \mathrm{H}_{50} \mathrm{O}_{18}$. $1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires C, $\left.67.8 ; \mathrm{H}, 4.85 \%\right)$; $\delta_{\mathrm{H}} 3.07\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{\prime}}{ }^{7} 7.1\right.$, $\left.J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.9,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 b^{\prime}} 6.1,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.64(1 \mathrm{H}$, br dd, $\left.5^{\prime}-\mathrm{H}\right), 4.29\left(1 \mathrm{H}, \mathrm{dt}, J_{4,5} 9.7,5-\mathrm{H}\right), 4.53\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 2.7\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3,6-\mathrm{H}^{\mathrm{a}}\right), 4.65\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 2.7,6-\mathrm{H}^{\mathrm{b}}\right), 4.69(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=11.5,4-\mathrm{H}\right), 5.02\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.44(1 \mathrm{H}$, dd, $\left.J_{3^{\prime}, 4^{\prime}} 3.3,3^{\prime}-\mathrm{H}\right), 5.62\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.4^{\prime}-\mathrm{H}\right), 5.85\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}\right.$ $\left.10.4,2^{\prime}-\mathrm{H}\right), 5.86\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.4,2-\mathrm{H}\right), 6.04(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$, $6.54\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 2.3,1-\mathrm{H}\right)$ and $7.10-8.20(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$.

6-Azido-2,3,4-tri-O-benzoyl-6-deoxy- β-D-galactopyranosyl$(1 \rightarrow 4)-1,2,3,6$-tetra-O-benzoyl- α-D-mannopyranose 67

To a stirred solution of the alcohol $66(900 \mathrm{mg}, 0.84 \mathrm{mmol})$, triphenylphosphine ($2.62 \mathrm{~g}, 10 \mathrm{mmol}, 12$ eq.) and $\mathrm{NaN}_{3}(1.5 \mathrm{~g}$, 23 mmol , 27 eq.) in DMF ($20 \mathrm{~cm}^{3}$) was added tetrachloromethane $\left(4 \mathrm{~cm}^{3}\right)$. The mixture was stirred at rt for 36 h , diluted with water, and extracted with dichloromethane $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed successively with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. FCC (tolueneethyl acetate, $95: 5$) of the residue gave the azido derivative $\mathbf{6 7}$ $(550 \mathrm{mg}, 60 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+85\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ 0.80 (solvent B) (Found: C, $65.95 ; \mathrm{H}, 4.5$; N, 3.9. $\mathrm{C}_{61} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{17}{ }^{\circ}$ $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 65.8 ; \mathrm{H}, 4.6 ; \mathrm{N}, 3.8 \%$); $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1}$ (inter alia) $1729(\mathrm{C}=\mathrm{O}), 2102\left(-\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}} 2.82\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{\prime}} 7.4, J_{6 a^{\prime}, 6 \mathrm{~b}^{\prime}}\right.$ $\left.12.8,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right)$, $3.03\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.3,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.65(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $\left.5^{\prime}-\mathrm{H}\right), 4.28\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=2.5,5-\mathrm{H}\right), 4.55(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3,6-\mathrm{H}^{\mathrm{a}}\right), 4.69\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right), 4.81\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=\right.$ $9.7,4-\mathrm{H}), 5.03\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.35\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4\right.$,
$\left.3^{\prime}-\mathrm{H}\right), 5.63\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 5.76\left(1 \mathrm{H}\right.$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 10.4,2^{\prime}-\mathrm{H}\right)$, $5.87\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.3,2-\mathrm{H}\right), 6.04(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 6.54(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1,2} 2.2,1-\mathrm{H}\right)$ and $7.10-8.20(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$.

6-Azido-2,3,4-tri-O-benzoyl-6-deoxy- β-D-galactopyranosyl$(1 \rightarrow 4)$ 2,3,6-tri-O-benzoyl- α-D-mannopyranose 68

To a solution of 1-O-benzoate $67(500 \mathrm{mg}, 0.456 \mathrm{mmol})$ in $\mathrm{MeCN}\left(6 \mathrm{~cm}^{3}\right)$ was added $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ dimethylamine in THF ($2.5 \mathrm{~cm}^{3}, 5 \mathrm{mmol}, 11 \mathrm{eq}$.), and the mixture was kept at rt with monitoring by TLC (solvent B). After 48 h , the mixture was concentrated and acetonitrile was evaporated off from the residue. FCC [toluene-ethyl acetate, $(95: 5) \longrightarrow(85: 15)$] of the residue gave the hemiacetal derivative $\mathbf{6 8}(357 \mathrm{mg}, 79 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+56\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.65$ (solvent B) (Found : C, 65.7; H, 4.7; N, 4.0. $\mathrm{C}_{54} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{16}$ requires C, 65.4; $\mathrm{H}, 4.6 ; \mathrm{N}, 4.2 \%$); $v_{\max }$ (film)/ cm^{-1} (inter alia) 1731 (C=O), 2111 $\left(-\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}} 2.73\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{\prime}} 7.5, J_{6 \mathrm{a}^{\prime}, 6 b^{\prime}} 12.8,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 2.95(1 \mathrm{H}$, dd, $\left.J_{5^{\prime}, \text {,6 }}{ }^{\prime} 5.4,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.42\left(1 \mathrm{H}, \mathrm{d}, J_{1, \text { он }} 4.0,1-\mathrm{OH}\right), 3.54(1 \mathrm{H}, \mathrm{br}$ dd, $\left.5^{\prime}-\mathrm{H}\right), 4.25\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=2.0,5-\mathrm{H}\right), 4.38(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3,6-\mathrm{H}^{\mathrm{a}}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right), 4.58\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=\right.$ $9.7,4-\mathrm{H}), 4.89\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.29\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.4\right.$, $\left.3^{\prime}-\mathrm{H}\right), 5.30(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.53\left(1 \mathrm{H}\right.$, br d, $\left.4^{\prime}-\mathrm{H}\right), 5.60(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1,2} 1.9, J_{2,3} 3.3,2-\mathrm{H}\right), 5.64\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.3,2^{\prime}-\mathrm{H}\right), 5.86(1 \mathrm{H}$, dd, $3-\mathrm{H})$ and $7.00-8.00(30 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ph})$.

6-Azido-2,3,4-tri-O-benzoyl-6-deoxy- β-D-galactopyranosyl$(1 \rightarrow 4)$-2,3,6-tri-O-benzoyl- α-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 69

This compound was prepared by reaction of the hemiacetal 68 ($80 \mathrm{mg}, 0.081 \mathrm{mmol}$) with $\mathrm{PCl}_{3}\left(0.04 \mathrm{~cm}^{3}, 0.458 \mathrm{mmol}, 5.7 \mathrm{eq}\right.$.), imidazole ($107 \mathrm{mg}, 1.57 \mathrm{mmol}, 6.5$ eq.) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.225 \mathrm{~cm}^{3}\right.$, 1.57 mmol , 6.5 eq.) in $\mathrm{CH}_{3} \mathrm{CN}\left(8 \mathrm{~cm}^{3}\right)$ followed by hydrolysis with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ TEA hydrogen carbonate ($5 \mathrm{~cm}^{3}$) as described for the preparation of the disaccharide H-phosphonate 24. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}\right.$, $\left.(98.8: 0.2: 1) \rightarrow(91: 8: 1)\right]$ gave the H-phosphonate 69 (93 mg , quant.) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+53\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.10$ (solvent D); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ (inter alia) $1733(\mathrm{C}=\mathrm{O}), 2107\left(-\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}} 1.35(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}$), $2.86\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 7.3, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 12.8,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.01$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 b^{\prime}} 5.4,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.10\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.61$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, 5^{\prime}-\mathrm{H}\right), 4.41\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=2.0,5-\mathrm{H}\right), 4.52$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.65\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.8,4-\mathrm{H}\right)$, $4.67\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right)$, $4.95\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.36(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3^{\prime}, 4^{\prime}} 3.3,3^{\prime}-\mathrm{H}\right), 5.60\left(1 \mathrm{H}\right.$, br d, $\left.4^{\prime}-\mathrm{H}\right), 5.70\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.4\right.$, $\left.2^{\prime}-\mathrm{H}\right), 5.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.76\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 2.1, J_{1, \mathrm{P}} 8.8,1-\mathrm{H}\right)$, $5.94(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 7.05\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 637.3, \mathrm{HP}\right)$ and $7.10-8.20$ $(30 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ph}) ; \delta_{\mathrm{P}} 0.05$; ESMS(-) data: $m / z 1053.7(100 \%$, $\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$) (expected $m / z, 1054.25 ; \mathrm{C}_{60} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{18} \mathrm{P}$ requires $M, 1156.37$).

Decyl 6-azido-2,3,4-tri-O-benzoyl-6-deoxy- β-d-galacto-pyranosyl-($1 \rightarrow 4$)-2,3,6-tri-O-benzoyl- α-D-mannopyranosyl phosphate, triethylammonium salt 70

This compound was prepared by condensation of the disaccharide H-phosphonate 69 ($93 \mathrm{mg}, 0.081 \mathrm{mmol}$) and decan-1-ol ($0.03 \mathrm{~cm}^{3}, 0.16 \mathrm{mmol}, 2.0$ eq.) in pyridine ($1 \mathrm{~cm}^{3}$) in the presence of trimethylacetyl chloride ($\left.0.025 \mathrm{~cm}^{3}, 0.203 \mathrm{mmol}, 2.5 \mathrm{eq}.\right)$ followed by oxidation with iodine ($40 \mathrm{mg}, 0.158 \mathrm{mmol}, 2.0$ eq.) in pyridine-water $\left(95: 5 ; 1.15 \mathrm{~cm}^{3}\right)$ as described for the synthesis of the phosphodiester 35. FCC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}\right.$, ($98.9: 0.1: 1) \longrightarrow(91: 8: 1)]$ gave the phosphodiester $70(95 \mathrm{mg}$, 90%) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+51\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.32$ (solvent D); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ (inter alia) $1729(\mathrm{C}=\mathrm{O}), 2102\left(-\mathrm{N}_{3}\right)$; $\delta_{\mathrm{H}} 0.80\left(3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.10-1.30(14 \mathrm{H}, \mathrm{m}, 7 \times$ CH_{2}), $1.13\left(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.52(2 \mathrm{H}$, quintet, $\left.J 6.9, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.76\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right)$, $2.92\left(1 \mathrm{H}, \mathrm{dd}, J_{6 a^{\prime}, 6 b^{\prime}} 12.8,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.48\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J_{5^{\prime}, 6 a^{\prime}}=J_{5^{\prime}, 6 \mathrm{~b}^{\prime}}=\right.$ $\left.6.3,5^{\prime}-\mathrm{H}\right), 3.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2} \mathrm{CH}_{2}\right), 4.34\left(1 \mathrm{H}\right.$, ddd, $J_{5,6 \mathrm{a}} 2.5$,
$5-\mathrm{H}), 4.42\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.56\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=\right.$ $9.7,4-\mathrm{H}), 4.57\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.5,6-\mathrm{H}^{\mathrm{b}}\right), 4.84\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9\right.$, $\left.1^{\prime}-\mathrm{H}\right), 5.26\left(1 \mathrm{H}\right.$, dd, $\left.J_{3^{\prime}, 4} 3.3,3^{\prime}-\mathrm{H}\right), 5.51\left(1 \mathrm{H}\right.$, br d, $\left.4^{\prime}-\mathrm{H}\right), 5.58$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 2.2, J_{1, \mathrm{P}} 8.0,1-\mathrm{H}\right), 5.61\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.4,2^{\prime}-\mathrm{H}\right)$, $5.68\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.0,2-\mathrm{H}\right)$, $5.85(1 \mathrm{H}$, dd, $3-\mathrm{H})$ and $7.10-8.00$ $(30 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-2.68$; ESMS(-) data: $m / z 1209.9(100 \%$, $\left.\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\right.$expected $m / z, 1210.40 ; \mathrm{C}_{70} \mathrm{H}_{81} \mathrm{~N}_{4} \mathrm{O}_{19} \mathrm{P}$ requires $M, 1312.52$).

Decyl 6-azido-6-deoxy- β-D-galactopyranosyl-(1 $\rightarrow 4$)- α-d-

 mannopyranosyl phosphate, triethylammonium salt 71To a solution of compound $70(62 \mathrm{mg}, 0.047 \mathrm{mmol})$ in MeOH $\left(20 \mathrm{~cm}^{3}\right)$ was added $4.6 \mathrm{~mol} \mathrm{dm}^{-3}$ methanolic $\mathrm{NaOMe}\left(0.2 \mathrm{~cm}^{3}\right)$. The mixture was kept at rt for 14 h , whereafter it was deionized with Dowex 50W-X4 $\left(\mathrm{H}^{+}\right)$resin, filtered, and immediately neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. After concentration, water $\left(3 \times 5 \mathrm{~cm}^{3}\right)$ was evaporated off from the residue (for removing methyl benzoate) to give the phosphodiester 71 (32 mg , quant.) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+26(c \quad 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.75$ (solvent E); $v_{\text {max }}($ film $) /$ cm^{-1} (inter alia) $2105\left(-\mathrm{N}_{3}\right), 3416(\mathrm{OH}) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 8.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 14.1,22.7,25.7,29.3$ (2 C), 29.6 (2 C), 31.9 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 30.6 (d, $\left.J_{\mathrm{C}, \mathrm{P}} 5.1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}\right), 47.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 51.5\left(\mathrm{C}-6^{\prime}\right), 60.6$ (C-6), 66.9 (d, $J_{\mathrm{C}, \mathrm{P}} 3.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OP}$), 69.2 (2 C, C-3 and C-4'), 70.5 (d, $J_{\mathrm{C}, \mathrm{P}} 9.5, \mathrm{C}-2$), 70.8 (C-2'), 72.5 (C-5), 72.8 (C-3'), 73.8 (C-5'), 76.3 (C-4), 96.1 (d, $J_{\mathrm{C}, \mathrm{P}} 4.4, \mathrm{C}-1$), 103.3 (C-1'); $\delta_{\mathrm{P}}-1.86$; ESMS(-) data: $m / z 586.05\left(100 \%,\left[M-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right.$) (expected $m / z, 586.25 ; \mathrm{C}_{28} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{P}$ requires $M, 688.36$).

Dec-9-enyl β-D-galactopyranosyl-(1 $\rightarrow 4$)-3-deoxy- α-d-arabinohexopyranosyl phosphate, triethylammonium salt 10

To a solution of compound $25(65 \mathrm{mg}, 0.064 \mathrm{mmol})$ in MeOH $\left(20 \mathrm{~cm}^{3}\right)$ was added $4.6 \mathrm{~mol} \mathrm{dm}^{-3}$ methanolic $\mathrm{NaOMe}\left(0.2 \mathrm{~cm}^{3}\right)$. The mixture was kept at rt for 3 h , whereafter it was deionized with Dowex 50W-X4 $\left(\mathrm{H}^{+}\right)$resin, filtered, and immediately neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. After concentration, water $\left(3 \times 5 \mathrm{~cm}^{3}\right)$ was evaporated off from the residue (for removing methyl benzoate) to give the phosphodiester $\mathbf{1 0}(41 \mathrm{mg}$, quant.) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+37(c 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.58$ (solvent $\left.E\right) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $1.12\left(9 \mathrm{H}, \mathrm{t}, J 7.3,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.91(2 \mathrm{H}, \mathrm{q}$, $\left.J 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 3.03\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 4.26(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{\prime}} 7.8,1^{\prime}-\mathrm{H}\right), 5.21\left(1 \mathrm{H}\right.$, br d $\left.J_{1, \mathrm{P}} 7.4,1-\mathrm{H}\right)$ and $5.72[1 \mathrm{H}$, ddt, $\left.J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.7, J_{\text {cis }} 10.2, J_{\text {trans }} 17.0, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right] ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and ESMS(-) data: see Table 1.

Dec-9-enyl $\boldsymbol{\beta}$-D-galactopyranosyl-($1 \rightarrow 4$)-3-deoxy-3-fluoro- α-Dmannopyranosyl phosphate, triethylammonium salt 11
De-O-acylation of compound $\mathbf{4 5}$ (230 mg) with $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ MeONa in methanol (4 h at rt) followed by work-up, as described in the preparation of the phosphodiester $\mathbf{1 0}$, gave the phosphodiester 11 ($151 \mathrm{mg}, 97 \%$) as an amorphous solid; $[a]_{D}^{24}$ $+24(c 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.69$ (solvent $\left.E\right) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) 1.14 ($9 \mathrm{H}, \mathrm{t}, J 7.4,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}$), $1.93\left(2 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}=\right)$, $3.06\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$, $3.42\left(1 \mathrm{H}\right.$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 9.9,2^{\prime}-\mathrm{H}\right)$, $4.36\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2} 7.7,1^{\prime}-\mathrm{H}\right), 5.31\left(1 \mathrm{H}\right.$, ddd, $J_{1,2} 2.0, J_{1, \mathrm{P}} 7.4, J_{1, \mathrm{~F}}$ $5.0,1-\mathrm{H})$ and $5.78\left[1 \mathrm{H}\right.$, ddt, $J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.8, J_{\text {cis }} 10.2, J_{\text {trans }} 17.0$, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right] ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and ESMS(-) data: see Table 1.

Dec-9-enyl β-d-galactopyranosyl-(1 $\rightarrow 4$)-6-deoxy-6-fluoro- α-dmannopyranosyl phosphate, triethylammonium salt 12
De-O-acylation of compound 54 (202 mg) with $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ MeONa in methanol (6 h at rt) followed by work-up, as described in the preparation of the phosphodiester $\mathbf{1 0}$, gave the phosphodiester 12 ($128 \mathrm{mg}, 99 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}$ +24 (c 1, MeOH); $R_{\mathrm{f}} 0.67$ (solvent E); δ_{H} (inter alia) $1.17(9 \mathrm{H}$, $\left.\mathrm{t}, J 7.3,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.94\left(2 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 3.08$ $\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.44\left(1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}} 10.0,2^{\prime}-\mathrm{H}\right), 3.55(1 \mathrm{H}$, dd, $\left.J_{3^{\prime}, 4^{\prime}} 3.3,3^{\prime}-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.6,1^{\prime}-\mathrm{H}\right), 4.58(1 \mathrm{H}, \mathrm{br}$ dd,
$\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.5, J_{6 \mathrm{a}, \mathrm{F}} 48.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.75\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $\left.J_{6 \mathrm{~b}, \mathrm{~F}} 48.5,6-\mathrm{H}^{\mathrm{b}}\right)$, $5.28\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.9, J_{1, \mathrm{P}} 7.9,1-\mathrm{H}\right)$ and $5.77[1 \mathrm{H}$, ddt, $\left.J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.7, J_{\text {cis }} 10.2, J_{\text {trans }} 17.0, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right] ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and ESMS(-) data: see Table 1.

Dec-9-enyl 6-deoxy-6-fluoro- β-d-galactopyranosyl-($1 \rightarrow 4$)- α-dmannopyranosyl phosphate, triethylammonium salt 13

De-O-acylation of compound $64(212 \mathrm{mg}, 0.173 \mathrm{mmol})$ with $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MeONa}$ in methanol (40 h at rt) followed by work-up, as described in the preparation of the phosphodiester 10, gave the phosphodiester $\mathbf{1 3}(112 \mathrm{mg}, 97 \%)$ as an amorphous solid; $[a]_{\mathrm{D}}^{24}+26(c \quad 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.55$ (solvent $\left.E\right) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $1.16\left(9 \mathrm{H}, \mathrm{t}, J 7.4,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.95(2 \mathrm{H}, \mathrm{q}$, $\left.J 6.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 3.07\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.47(1 \mathrm{H}$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 9.9,2^{\prime}-\mathrm{H}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4} 3.4,3^{\prime}-\mathrm{H}\right), 4.38(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{\prime}} 7.8,1^{\prime}-\mathrm{H}\right), 4.53\left(1 \mathrm{H}\right.$, ddd, $J_{5^{\prime}, 6 a^{\prime}} 7.5, J_{6 a^{\prime}, 6 b^{\prime}} 10.1, J_{6 a^{\prime}, \mathrm{F}} 48.1$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.58\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 4.4, J_{6 \mathrm{~b}^{\prime} \cdot \mathrm{F}} 48.1,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 5.29(1 \mathrm{H}$, dd, $\left.J_{1,2} 1.6, J_{1, \mathrm{P}} 7.8,1-\mathrm{H}\right)$ and $5.69\left[1 \mathrm{H}\right.$, ddt, $J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.6$, $\left.J_{\text {cis }} 10.2, J_{\text {trans }} 17.0, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right] ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and ESMS(-) data: see Table 1.

Decyl β-d-galactopyranosyl-($1 \rightarrow 4$)-2-amino-2-deoxy- α-Dmannopyranosyl phosphate, sodium salt 14

A solution of compound 36 ($33 \mathrm{mg}, 0.054 \mathrm{mmol}$) in MeOH $\left(5.0 \mathrm{~cm}^{3}\right)$ containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{mg})$ was stirred under a slight overpressure of hydrogen at rt for 1 h , filtered, and concentrated to produce the phosphodiester $\mathbf{1 4}(30 \mathrm{mg}, 95 \%)$ as an amorphous solid; $[a]_{D}^{24}+27(c 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.75$ (solvent E); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $0.75\left(3 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.48(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.30\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.7,1^{\prime}-\mathrm{H}\right)$ and $5.25(1 \mathrm{H}$, $\left.\mathrm{br} \mathrm{d}, J_{1, \mathrm{P}} 7.5,1-\mathrm{H}\right) ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and $\operatorname{ESMS}(-)$ data: see Table 1.

Decyl β-D-galactopyranosyl-($1 \rightarrow 4$)-2-acetamido-2-deoxy- α-Dmannopyranosyl phosphate, triethylammonium salt 15

To a solution of compound $\mathbf{1 4}(14 \mathrm{mg}, 0.025 \mathrm{mmol})$ in MeOH $\left(2 \mathrm{~cm}^{3}\right)$ was added a solution $\left(0.1 \mathrm{~cm}^{3}\right)$ of acetic anhydride in MeOH [prepared from acetic anhydride $\left(0.05 \mathrm{~cm}^{3}\right)$ and MeOH $\left.\left(0.5 \mathrm{~cm}^{3}\right)\right]$. The mixture was kept at rt for 30 min and concentrated. The aqueous solution of the residue was washed with diethyl ether, then deionized with Dowex $50 \mathrm{~W}-\mathrm{X} 4\left(\mathrm{H}^{+}\right)$resin, filtered and immediately neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. The solution was concentrated to produce the phosphodiester $15(16 \mathrm{mg}$, $91 \%)$ as an amorphous solid; $[\alpha]_{D}^{24}+25(c 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.75$ (solvent E); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $0.72(3 \mathrm{H}, \mathrm{t}, J 6.6$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.12\left(9 \mathrm{H}, \mathrm{t}, J 7.2,3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.48(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.04\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$, $4.32\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.6,1^{\prime}-\mathrm{H}\right)$ and $5.20\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{1, \mathrm{P}} 7.2,1-\mathrm{H}\right)$; $\delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and $\operatorname{ESMS}(-)$ data: see Table 1.

Decyl 6-amino-6-deoxy- β-d-galactopyranosyl-($1 \rightarrow 4$)- α-Dmannopyranosyl phosphate, ammonium salt 16

A solution of phosphodiester $71(33 \mathrm{mg}, 0.047 \mathrm{mmol})$ in water $\left(25 \mathrm{~cm}^{3}\right)$ treated with Dowex $50 \mathrm{~W}-\mathrm{X} 4\left(\mathrm{Na}^{+}\right)$resin at rt for 4 h The resin was filtered off and the filtrate was concentrated. A solution of the residue in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ containing 20% $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{mg})$ was stirred under a slight overpressure of hydrogen at rt for 40 min , filtered and concentrated to give a crude product ($26 \mathrm{mg}, 94 \%$), which then was applied to a column ($18 \times 1.5 \mathrm{~cm}$) of Fractogel TSK DEAE-650 (S) ($\mathrm{HCO}_{3}{ }^{-}$-form) (Merck) eluted with a linear gradient of
$\mathrm{NH}_{4} \mathrm{HCO}_{3}\left(0 \rightarrow 0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ in $3: 2$ water-propan-2-ol at 1 $\mathrm{cm}^{3} \mathrm{~min}^{-1}$ to afford the phosphodisaccharide 16 ($12 \mathrm{mg}, 44 \%$) as an amorphous solid; $[a]_{\mathrm{D}}^{24}+16(c 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.58$ (solvent E); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $0.75\left(3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.7,1^{\prime}-\mathrm{H}\right)$ and $5.27\left(1 \mathrm{H}, \operatorname{br} \mathrm{d}, J_{1, \mathrm{P}} 7.4,1-\mathrm{H}\right) ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and ESMS(-) data: see Table 1.

Acknowledgements

This work was supported by two Wellcome Trust International Grants (for D. V. Y. and Y. E. T.). The research of A. V. N. was supported by an International Research Scholar's award from the Howard Hughes Medical Institute.

References

1 Part 11, A. J. Ross, I. A. Ivanova, M. A. J. Ferguson and A. V. Nikolaev, J. Chem. Soc., Perkin Trans. 1, 2001, 72.
2 M. J. McConville and M. A. J. Ferguson, Biochem. J., 1993, 294, 305.

3 M. A. Carver and S. J. Turco, J. Biol. Chem., 1991, 266, 10974.
4 A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1995, 1977.
5 A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1996, 1559.
6 A. P. Higson, Y. E. Tsvetkov, M. A. J. Ferguson and A. V. Nikolaev, J. Chem. Soc., Perkin Trans. 1, 1998, 2587.

7 A. P. Higson, Y. E. Tsvetkov, M. A. J. Ferguson and A. V. Nikolaev, Tetrahedron Lett., 1999, 40, 9281.
8 G. M. Brown, A. R. Millar, C. Masterson, J. S. Brimacombe, A. V. Nikolaev and M. A. J. Ferguson, Eur. J. Biochem., 1996, 242, 410.
9 I. A. Ivanova, A. J. Ross, M. A. J. Ferguson and A. V. Nikolaev, J. Chem. Soc., Perkin Trans. 1, 1999, 1743.

10 F. H. Routier, A. J. Ross, I. A. Ivanova, A. P. Higson, A. V. Nikolaev and M. A. J. Ferguson, in Abstract Book, XIX International Carbohydrate Symposium, San Diego, California, 1998, CP 099.
11 A. V. Nikolaev, I. A. Ivanova, V. N. Shibaev and N. K. Kochetkov, Carbohydr. Res., 1990, 204, 65.
12 H. H. Baer and H. R. Hanna, Carbohydr. Res., 1982, 110, 19
13 W. A. Szarek, A. Zamojski, K. N. Tiwari and E. R. Ison, Tetrahedron Lett., 1986, 27, 3827.
14 S. A. Abbas and A. H. Haines, Carbohydr. Res., 1975, 39, 358.
15 P. Kovac and K. J. Edgar, J. Org. Chem., 1992, 57, 2455.
16 N. E. Byramova, M. V. Ovchinnikov, L. V. Backinowsky and N. K. Kochetkov, Carbohydr. Res., 1983, 124, c8.
17 N. S. Utkina, A. V. Nikolaev and V. N. Shibaev, Sov. J. Bioorg. Chem. (Engl. Transl.), 1991, 17, 303.
18 K. Freudenberg, H. Toepffer and C. C. Andersen, Ber. Dtsch. Chem. Ges., 1928, 61, 1750.
19 S. Hanessian and J. M. Vatele, Tetrahedron Lett., 1981, 22, 3579.
20 M. Cerny, J. Dolezalova, J. Macova, J. Pacak, T. Trnka and M. Budesinsky, Collect. Czech. Chem. Commun., 1983, 48, 2693.

21 P. J. Card, J. Carbohydr. Chem., 1985, 4, 451.
22 N. K. Kochetkov, B. A. Dmitriev, N. E. Byramova and A. V. Nikolaev, Izv. Akad. Nauk SSSR, Ser. Khim., 1978, 652 (Chem. Abstr., 1978, 89, 24655f).
23 J. Kihlberg, T. Frejd, K. Jannson, A. Sundin and G. Magnusson, Carbohydr. Res., 1988, 176, 271.
24 F. Kong and C. Schuerch, Carbohydr. Res., 1983, 112, 141.
25 J.-C. Florent, C. Monneret and K. Huu, Tetrahedron, 1978, 34, 909.
26 K.-i. Sato, A. Yoshimoto and Y. Takai, Bull. Chem. Soc. Jpn., 1997, 70, 885.
27 J. A. L. M. van Dorst, C. J. van Heusden, J. M. Tikkanen, J. P. Kamerling and J. F. G. Vliegenthart, Carbohydr. Res., 1997, 297, 209.

28 F. H. Routier, A. P. Higson, I. A. Ivanova, A. J. Ross, Y. E. Tsvetkov, D. V. Yashunsky, P. A. Bates, A. V. Nikolaev and M. A. J. Ferguson, Biochemistry, 2000, 39, 8017.

